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a b s t r a c t

The method of Barker is a popular scheme for determination of activity coefficients from total pressure
measurements. A comprehensive review of this method is presented in this study. While discussing this
technique various aspects of (vapor + liquid) equilibrium (VLE) data reduction process including types of
algorithms applied, roles of saturated vapor pressures and equilibrium vapor compositions data, and
types of objective functions used are analyzed. Activity coefficient or liquid state models frequently used
in VLE data reduction are shown and their comparisons are investigated. More so, advantages and limi-
tations of Barker’s method are demonstrated.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Barker’s [1] method is an attractive P–x data reduction proce-
dure and this is a one-step analytical fitting technique that makes
direct use of the measured data [2]. This uses an arbitrary model
for the molar excess Gibbs free energy, GE (here expressed by g)
and then obtains the constants of that model from the isothermal
P–x data. Alternatively, it can also be applied to isobaric T–x data
[3]. Primarily it was developed for non-electrolyte hydrocarbon
mixtures; however, it is now being applied to electrolytes as well.
This can be carried out without numerical problems for electrolytic
systems and temperatures higher than the critical temperature [4].
Won and Prausnitz [5] extended this method to binary systems
containing one supercritical component. The general applicability
and advantages of Barker’s method for the reduction of isothermal

vapor/liquid equilibrium data are sufficiently demonstrated by the
authors in reference [2]. The main advantage of Barker’s method is
that experimental difficulties in measuring y (vapor compositions)
can be avoided since all values of y are obtained through data
regressions. This method is useful in such cases where the gaschro-
motographic analysis of the vapor phase composition is not accu-
rate enough [6]. However, the greatest limitation of Barker’s
method is that the g model must be chosen. The quality of the re-
sults will significantly depend on the chosen g model. In this article
computational techniques applied in Barker’s method will be
investigated and some comparisons of g models used in this meth-
od for different (vapor + liquid) equilibrium (VLE) systems will be
discussed.

2. Algorithms, roles of psat
i , y, and objective functions

Several algorithms are proposed for data reduction using Bar-
ker’s method. From thermodynamics, the total pressure P for a bin-
ary system is given as
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P ¼ x1c1p=1 þ x2c2p=2: ð1Þ

The symbols p=1 and p=2 are the ‘‘corrected’’ vapor pressures of com-
ponent 1 and 2, respectively. These are defined by

p=1 ¼ Psat
1 exp

ðVL
1 � B11ÞðP � psat

1 Þ
RT

� Pd12y2
2

RT

" #
; ð2Þ

p=2 ¼ Psat
2 exp

ðVL
2 � B22ÞðP � psat

2 Þ
RT

� Pd12y2
1

RT

" #
:

Here, Psat
1 and Psat

2 are the vapor pressure of the pure components, x
and y are liquid and vapor molar fractions respectively, c1 and c2 are
activity coefficients, VL

1 and VL
2 are liquid molar volumes, B11, B22,

and B12 are second virial coefficients in the equations of state of
the pure and mixed vapors, and d12 = 2B12 � B11 � B22. R is the uni-
versal gas constant. Barker [1] himself used the following activity
coefficient functions for equation (1):

ln c1 ¼ C0l1 þ C1m1 þ C2n1 þ � � � ;
ln c2 ¼ C0l2 þ C1m2 þ C2n2 þ � � � ;

ð3Þ

where

l1 ¼ x2
2; m1 ¼ �x2

2ð1� 4x1Þ; n1 ¼ x2
2ð1� 8x1 þ 12x2

1Þ;
l2 ¼ x2

1; m2 ¼ �x2
1ð1� 4x2Þ; n2 ¼ x2

1ð1� 8x2 þ 12x2
2Þ:

ð4Þ

The constants C0, C1, C2 were determined by successive approxima-
tions. To initiate calculations C1 and C2 were set to zero and C0 was
given by

C0 ¼ 4 ln
2P�

psat
1 þ psat

2

� �
: ð5Þ

P⁄ was the pressure for equimolar mixture estimated graphically.
Using this value of C0, approximate vapor concentrations were cal-
culated and were sufficient enough to be used in the small correc-
tion term Pd12y2

2
RT in equation (2). Subsequently p=1 and p=2 were

calculated from equation (2) followed by calculating a new P from
equation (1). The residuals r = Pexp � Pnew, and derivatives of dP/
dC0, dP/dC1, dP/dC2were predicted by

dP=dC0 ¼ l1c1p=1 þ l2c2p=2;

dP=dC1 ¼ m1c1p=1 þm2c2p=2;

dP=dC2 ¼ n1c1p=1 þ n2c2p=2:

ð6Þ

The changes oC0, oC1, oC2 in C0, C1, C2 would most nearly reduce the
pressure residuals to zero by fitting least squares to the equation

ðdP=dC0Þ@C0 þ ðdP=dC1Þ@C1 þ ðdP=dC2Þ@C2 ¼ r: ð7Þ

Improved C0, C1, C2 would be obtained upon adding oC0, oC1, oC2 in
C0, C1, and C2, respectively. This process would be repeated until C0,
C1, C2 did not change significantly.

Prausnitz et al. [7] showed a slightly different approach. In their
techniques y1 and y2 are set equal to zero in equation (2). Then
experimental P–x data are regressed to estimate the parameters
of appropriate activity co-efficient models (expressions of c1 and
c2). Once the parameters are obtained, new y1 and y2 can be found
by solving the following non-linear equation (8). This process
should be iterative until a consistent y1 and y2 reached

ln c1 ¼ ln
Py1

x1psat
1

� �
� ðB11 � VL

1ÞðP � psat
1 Þ

RT
þ P1y2

2d12

RT
;

ln c2 ¼ ln
Py2

x2psat
2

� �
� ðB22 � VL

2ÞðP � psat
2 Þ

RT
þ P2y2

1d12

RT
:

ð8Þ

Abbot and Van Ness [2] showed regression of following P–x relation
by

P ¼ x1psat
1

U1
exp g þ x2

dg
dx1

� �
þ x2psat

2

U2
exp g � x1

dg
dx1

� �
; ð9Þ

where

g � GE=RT ¼ x1 ln c1 þ x2 ln c2; ð10Þ

c1 ¼
y1P

x1psat
1

U1 ð11Þ

and

U1 ¼ exp
ðB11 � VL

1ÞðP � psat
1 Þ

RT
þ Py2

2d12

RT

 !
: ð12Þ

Here equations (9)–(12) are the algebraic manipulations of equa-
tions (1), (2), and (8). Equation (12) or the symbol U in equation
(9) is accounted for vapor pressure corrections. Similar to the previ-
ous case, the calculation starts by a guessed value of y in equation
(12). Equation (9) is minimized through the regression of a set of
values for the parameters in the correlating expression for g to find
Pcal. First and second terms of this equation represent Py1 and Py2,
respectively. Therefore new y values can be estimated from corre-
sponding terms by division of Pcal. This process is continued until
a steady y values are obtained. They [2] provided an alternative pro-
cedure basing the correlation on just P–x data through application
of equation (9). However, single values of psat

1 and psat
2 are required

whereas each data set has its own values for the pure component
vapor pressures. To overcome this, they obtained an additional
equation (equation (13)) to correct all reported values of P

rP
P
¼ y1

rpsat
1

psat
1
þ y2
rpsat

2

psat
2

: ð13Þ

The corrected P values are then used along with the average values
of psat

1 and psat
2 in equation (9). The parameters determined by

regression are finalized only when the entire data set (including
psat

1 and psat
2 ) is validated in accord with equation (13).

Equation (1) can be re-written as follows for component i:

P ¼
X

i

ðxicip
sat
i =UiÞ: ð14Þ

Here psat
i of the pure components appear explicitly as physical con-

stants, presumably known at the temperature at which P–x data are
considered. Moreover, psat

i are properly measured as part of the P–x
data set and they should be included in the regression process like
all other data points. As xi approaches 1.0, the psat

i values are no
more significant than other values of P and are equally subject to
experimental error and to smoothing during data reduction. Their
special significance enters only through the right terms in equation
(14) interacting with all data points of the regression set. The
authors in reference [8] suggested to accommodate these roles of
psat

i by treating them both as data points and as adjustable param-
eters; thus measured values of P for xi = 1.0 are included in the data
set, however, are not identified initially with psat

i . Rather, the values
of psat

i are determined by regression along with the parameters of
the expression of g. According to them, these values of psat

i become
the smoothed values of P for xi = 1.0 in any comparison of correlated
results with experimental data. This extended Barker’s method can
be recommended as a procedure of complete P–x data set reduction,
however, application of this technique is not guaranteed as a means
of correcting for the neglect of researchers to provide vigilant mea-
surements of psat

i values, taken in the same apparatus and with the
same materials as all other reported P–x data.

Kuschel et al. [9] elaborately discussed the role of vapor compo-
sition (y) in VLE data reduction. The superiority of the g values is
most striking in systems having large relative volatility values.
Inclusion of y values of these systems into the data reduction re-
sults in considerable deterioration of the calculated g values.
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