

The Combination of Platelet Count and Neutrophil Lymphocyte Ratio Is a Predictive **Factor in Patients with Esophageal Squamous Cell Carcinoma**

Ji-Feng Feng*,†, Ying Huang‡ and Qi-Xun Chen*,†

*Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China; [†]Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou 310022, Zhejiang Province, China; [‡]Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China

Abstract

OBJECTIVE: The prognostic value of inflammation indexes in esophageal cancer was not established. In this study, therefore, both prognostic values of Glasgow prognostic score (GPS) and combination of platelet count and neutrophil lymphocyte ratio (COP-NLR) in patients with esophageal squamous cell carcinoma (ESCC) were investigated and compared. METHODS: This retrospective study included 375 patients who underwent esophagectomy for ESCC. The cancer-specific survival (CSS) was calculated by the Kaplan-Meier method, and the difference was assessed by the log-rank test. The GPS was calculated as follows: patients with elevated Creactive protein (>10 mg/l) and hypoalbuminemia (<35 g/l) were assigned to GPS2. Patients with one or no abnormal value were assigned to GPS1 or GPS0, respectively. The COP-NLR was calculated as follows: patients with elevated platelet count (>300 \times 10⁹/I) and neutrophil lymphocyte ratio (>3) were assigned to COP-NLR2. Patients with one or no abnormal value were assigned to COP-NLR1 or COP-NLR0, respectively. RESULTS: The 5year CSS in patients with GPS0, 1, and 2 was 50.0%, 27.0%, and 12.5%, respectively (P < .001). The 5-year CSS in patients with COP-NLR0, 1, and 2 was 51.8%, 27.0%, and 11.6%, respectively (P < .001). Multivariate analysis showed that both GPS (P = .003) and COP-NLR (P = .003) were significant predictors in such patients. In addition, our study demonstrated a similar hazard ratio (HR) between COP-NLR and GPS (HR = 1.394 vs HR = 1.367). CONCLUSIONS: COP-NLR is an independent predictive factor in patients with ESCC. We conclude that COP-NLR predicts survival in ESCC similar to GPS.

Translational Oncology (2014) 7, 632-637

Introduction

Esophageal cancer (EC) is the eighth most common cancer worldwide and the sixth leading cause of death from cancer [1]. Squamous cell carcinoma (SCC) comprises about 80% of all ECs worldwide [2]. In China, SCC is the most common pathologic type of ECs, in contrast to the predominance of adenocarcinoma in the Western countries [3,4]. There are important biologic differences between China and Western countries regarding ECs; therefore, a prognostic study that takes into account SCC in China is necessary.

Recently, systemic inflammatory response plays an important role in the progression of cancer [5,6]. Previous studies have shown that serum C-reactive protein (CRP) influenced the prognosis in patients with gastrointestinal cancers [7]. Moreover, the Glasgow prognostic score (GPS) combines serum CRP and hypoalbuminemia and has been demonstrated to be a predictive factor in various cancers, including ECs [8-10]. In addition, there is an increasing evidence

Address all correspondence to: Ji-Feng Feng, MD, Department of Thoracic Surgery, Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, No. 38 Guangji Road, Banshan Bridge, Hangzhou 310022, China. E-mail: Jifzhejiang@gmail.com

Received 23 June 2014; Revised 29 July 2014; Accepted 30 July 2014

© 2014 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/3.0/).

1936-5233/14

http://dx.doi.org/10.1016/j.tranon.2014.07.009

that platelet count and neutrophil lymphocyte ratio (NLR) can be used for prognostication in several cancers [11,12]. Recently, Ishizuka et al. [13] evaluated a novel inflammation-based prognostic system, termed as the combination of platelet count and NLR (COP-NLR). They demonstrated that COP-NLR is a useful predictor of postoperative survival in patients with colorectal cancer [13]. However, to the best of our knowledge, no studies regarding COP-NLR in patients with EC are available. Therefore, the aim of this study was to investigate and compare the prognostic values of COP-NLR and GPS in patients with esophageal squamous cell carcinoma (ESCC).

Methods

Patients

From January 2006 to December 2008, a retrospective analysis was conducted in 375 patients with ESCC who underwent curative esophagectomy at Zhejiang Cancer Hospital. All of the patients included in the analysis fit the following criteria: 1) ESCC confirmed by histopathology, 2) surgery with curative esophagectomy, 3) at least six lymph nodes were examined for pathologic diagnosis, and 4) surgery was neither preceded nor followed by adjuvant chemotherapy and/or radiotherapy.

On the basis of the medical records, the following data were collected for each patient: age, gender, laboratory examination, differentiation, tumor length and location, depth of invasion, nodal metastasis, and other miscellaneous characteristics. Ethical approval was obtained from the Ethical Committees of Zhejiang Cancer Hospital. All of the patients included in the study were staged according to the seventh edition of the American Joint Committee on Cancer Cancer Staging Manual [14].

In our institute, patients were followed up in the outpatient department. X-ray or computed tomography of the chest was performed during the follow-up. As this study described the prognosis of patients with ESCC, therefore, a cancer-specific survival (CSS) analysis would be more appropriate. Therefore, the CSS was ascertained in this study. The last follow-up time was November 2011.

GPS and COP-NLR Evaluation

Routine laboratory measurements including the serum levels of CRP, albumin, and blood cell counts were extracted in a retrospective fashion from the medical records. GPS was calculated as follows: patients with elevated CRP (> 10 mg/l) and hypoalbuminemia (< 35 g/l) were assigned to GPS2. Patients with one or no abnormal value were assigned to GPS1 or GPS0, respectively [8]. COP-NLR was calculated as follows: patients with elevated platelet count level (> 300 \times 10 9 /l) and NLR (> 3) were assigned to COP-NLR2. Patients with one or no abnormal value were assigned to COP-NLR1 or COP-NLR0, respectively [13].

Statistical Analysis

Statistical evaluation was conducted with SPSS 17.0 (Chicago, IL). The Pearson Chi-squared test was used to determine the significance of differences. Correlation analysis was performed by Pearson and Spearman correlation analyses. CSS was calculated by the Kaplan-Meier method, and the difference was assessed by the log-rank test. A univariate analysis was used to examine the association between various prognostic predictors and CSS. Possible prognostic factors associated with CSS on univariate analysis were considered in a multivariable Cox proportional hazards regression analysis with the enter method. Moreover, the Akaike information criterion (AIC) and

Bayesian information criteria (BIC) were used to identify the statistical model [15,16]. AIC was defined as AIC = $-2\log(\text{maximum likelihood}) + 2 \times (\text{the number of parameters in the model})$. BIC was defined as BIC = $-2\log(\text{maximum likelihood}) + (\text{the number of parameters in the model}) \times \log(\text{sample size})$. A smaller AIC or BIC value indicates a more desirable model for predicting the outcome. A P value less than .05 was considered to be statistically significant.

Results

Patient Characteristics

Among the 375 patients with ESCC, 49 (13.1%) were women and 326 (86.9%) were men. The mean age was 59.1 \pm 7.8 years, with an age range from 36 to 80 years. All of the clinicopathologic characteristics were comparable between patients grouped by GPS and COP-NLR, as shown in Tables 1 and 2. There were significant differences between the GPS and COP-NLR groups in tumor length (P<.001), depth of invasion (P<.001), and nodal metastasis (P<.001). In addition, an elevated COP-NLR was also associated with higher differentiation (P=.006).

Cancer-Specific Survival

The 5-year CSS was 38.1% in our study. The 5-year CSS in patients with GPS0, 1, and 2 was 50.0%, 27.0%, and 12.5%, respectively (GPS0 vs GPS1, P < .001; GPS1 vs GPS2, P = .035; Figure 1). The 5-year CSS in patients with COP-NLR0, 1, and 2 was 51.8%, 27.0%, and 11.6%, respectively (COP-NLR0 vs COP-NLR1, P < .001; COP-NLR1 vs COP-NLR2, P = .005; Figure 2).

Prognostic Factors

By univariate analysis, we found that seven clinicopathologic variables had significant associations with CSS (Table 3). Then, all of

Table 1. The Characteristics of the 375 SCCE Patients Grouped by GPS

	GPS0 (n)	GPS1 (n)	GPS2 (n)	P Value
Age (years)				.697
≤60	125	63	26	
>60	87	52	22	
Gender				.245
Female	32	14	3	
Male	180	101	45	
Tumor length (cm)				<.001
≤3	71	25	3	
>3	141	90	45	
Tumor location				.193
Upper	9	7	4	
Middle	93	61	26	
Lower	110	47	18	
Vessel involvement				.101
Negative	183	90	37	
Positive	29	25	11	
Perineural invasion				.226
Negative	177	92	35	
Positive	35	23	13	
Differentiation				.273
Well	32	13	7	
Moderate	144	75	27	
Poor	36	27	14	
Depth of invasion				<.001
T1	49	13	1	
T2	41	17	4	
T3	108	67	35	
T4	14	18	8	
Nodal metastasis				<.001
Negative	128	56	15	
Positive	84	59	33	

Download English Version:

https://daneshyari.com/en/article/2163759

Download Persian Version:

https://daneshyari.com/article/2163759

<u>Daneshyari.com</u>