


Contents lists available at SciVerse ScienceDirect

## Cell Calcium

journal homepage: www.elsevier.com/locate/ceca



## PLCζ and the initiation of Ca<sup>2+</sup> oscillations in fertilizing mammalian eggs

### Karl Swann\*, F. Anthony Lai

Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK

#### ARTICLE INFO

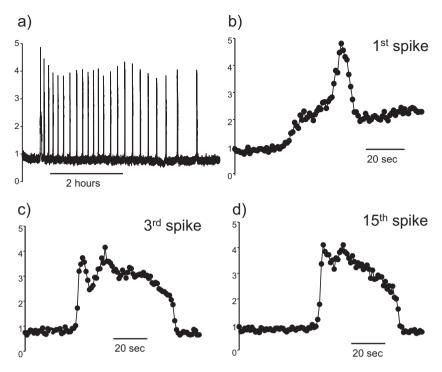
Article history:
Received 16 October 2012
Received in revised form 31 October 2012
Accepted 1 November 2012
Available online 5 December 2012

Keywords: Calcium Phospholipase Sperm Egg Fertilization

#### ABSTRACT

Mammalian eggs undergo a prolonged series of low frequency  $Ca^{2+}$  oscillations at fertilization. These  $Ca^{2+}$  oscillations are the immediate cause of egg activation. The  $Ca^{2+}$  oscillations in mouse eggs have been shown to be driven by increased  $InsP_3$  production. Substantial evidence now indicates that a sperm-derived phospholipase C-zeta ( $PLC\zeta$ ) is the key molecule that causes these  $Ca^{2+}$  oscillations at fertilization. The fertilizing sperm is envisaged to introduce this essential molecule into the egg following gamete fusion. This review summarizes our current knowledge of how sperm  $PLC\zeta$  causes these oscillations and why it is so much more effective at triggering  $InsP_3$  production and  $Ca^{2+}$  oscillations in eggs, than other somatic isoforms of PLC. The molecular features of  $PLC\zeta$  and how they relate to the pattern of  $Ca^{2+}$  oscillations seen at fertilization are considered. We also discuss the evidence that  $PLC\zeta$  does not hydrolyze the conventional source of  $PI(4,5)P_2$  in the plasma membrane to make  $InsP_3$ , but instead uses a distinct pool of  $PI(4,5)P_2$  present on intracellular vesicles. This leads us to suggest that sperm  $PLC\zeta$  may be targeted to these cytoplasmic vesicles by directly interacting with a specific but as yet unidentified egg  $PLC\zeta$ -binding protein.

© 2012 Elsevier Ltd. All rights reserved.


### 1. Ca<sup>2+</sup> oscillations and mammalian egg activation

The sperm is the trigger for egg activation and embryo development in most animals and, in all the cases studied a signal from the sperm produces an acute rise in the intracellular free Ca<sup>2+</sup> concentration within the egg [1]. The form of the  ${\rm Ca^{2+}}$  rise can be a single large increase that crosses the egg from the point of sperm entry, as seen during fertilization in sea urchins, fish and frogs [1,2]. However, more commonly in eggs from different phyla, the sperm triggers a conspicuous series of cytoplasmic Ca<sup>2+</sup> oscillations [1]. In all mammals studied to date, the sperm has been shown to cause a prolonged series of low frequency oscillations in intracellular Ca<sup>2+</sup> [1–3]. An example of a recording of intracellular Ca<sup>2+</sup> changes in a fertilizing mouse egg is shown in Fig. 1a. The first Ca<sup>2+</sup> increase in fertilizing mouse eggs occurs about a minute after sperm-egg membrane fusion, and consists of a rise in Ca<sup>2+</sup> concentrations that lasts one or several minutes and that exceeds 1  $\mu$ M Ca<sup>2+</sup> [4,5]. The initial Ca<sup>2+</sup> transient in mouse eggs usually has two stages (Fig. 1b), the first being rather slow and taking several seconds whereas subsequent Ca<sup>2+</sup> transients show a more rapid rate of rise [4]. However, hamster eggs show a monotonic rise in the first and all subsequent Ca<sup>2+</sup> rises [6]. In both mouse and hamster eggs there is then a series of further oscillations that last for several hours, occurring at an

interval of about 10 min [2,4,5]. The Ca<sup>2+</sup> oscillations at fertilization in other mammals are broadly similar, although the frequency of oscillations tends to be lower in larger eggs (one transient every  $30 \, \text{min}$ ), such as those from human, cow and pig [7–9]. In mouse and hamster eggs, the initial Ca<sup>2+</sup> increase has been shown to spread across the egg with a wave-like profile that takes about 5 s and is initiated from the region of sperm-egg fusion [4,6]. As more oscillations occur, the Ca<sup>2+</sup> waves speed up so that they cross the egg in less than 1 s, and the starting point of each wave arises from variable regions of the egg cortex. This phenomenon is best observed with rapid imaging, but the change in Ca<sup>2+</sup> wave speed is also reflected by the change in the rate of rise of Ca<sup>2+</sup> transients measured from the whole cell [4]. The initial Ca<sup>2+</sup> change at fertilization of a mouse egg lasts  $\sim 10$  s during the first rising phase, whereas the later Ca<sup>2+</sup> transients have a more rapid rising phase of  $\sim 1$  s or less (Fig. 1b-d). The change in wave profiles and rate of rise of Ca<sup>2+</sup> transients is apparently due to a transition from 'non-excitable' to an 'excitable' egg cytoplasm upon fertilization. For example, the injection of Ca<sup>2+</sup> into unfertilized hamster or mouse eggs does not generate much Ca<sup>2+</sup> release but, after fertilization, very small injections of Ca<sup>2+</sup> into the egg triggers substantial further Ca<sup>2+</sup> release [10,11]. Explaining this change in excitability is a key part of understanding how the sperm trigger Ca<sup>2+</sup> oscillations.

The oscillations in Ca<sup>2+</sup> at fertilization as a whole are known to be essential for egg activation since preventing them by injecting a Ca<sup>2+</sup> chelator results in blockade of all the events of egg activation [12]. Mammalian eggs can be activated by a single large Ca<sup>2+</sup> rise, as seen with application of Ca<sup>2+</sup> ionophore, but this is not as efficient

<sup>\*</sup> Corresponding author. Tel.: +44 2920 742039; fax: +44 2920 743500. E-mail address: swannk1@cf.ac.uk (K. Swann).



**Fig. 1.** Ca<sup>2+</sup> oscillations at fertilization. The cytoplasmic  $Ca^{2+}$  oscillations occurring within a mouse egg at fertilization were monitored with a  $Ca^{2+}$ -sensitive fluorescent dye, Rhod-dextran, using a continuous fluorescence excitation and light collection with a photon counting camera (see [16] and [32] for methods). Each Y-axis represents a fluorescence ratio taken as the fluorescence at each point divided by the fluorescence at the start of the recording. In (a) is shown a recording of the entire series of  $Ca^{2+}$  oscillations for an egg that eventually formed 2 pronuclei. In (b), (c) and (d) are shown examples of the 1st, 3rd and 15th  $Ca^{2+}$  transient from the same recording but on an expanded timescale with each dot representing 1 s of integrated fluorescence. The 3rd and 15th  $Ca^{2+}$  transients occurred at 13 and 126 min, respectively, after the initial rise in  $Ca^{2+}$  at fertilization.

a stimulus as Ca<sup>2+</sup> oscillations [3]. Some chemicals such as protein kinase inhibitors, or protein synthesis inhibitors can activate mammalian eggs without causing any Ca<sup>2+</sup> increase [3,13], but these are non-physiological. The most reliable way to activate development is *via* Ca<sup>2+</sup> oscillations, or at least *via* some form of repetitive Ca<sup>2+</sup> increase. For example, in the mouse egg activation is effectively achieved by Ca<sup>2+</sup> oscillations that can be induced by incubating eggs in Str<sup>2+</sup> containing media [12]. In other non-rodent species, repetitive electrical pulses can activate eggs through the ability to cause repeated Ca<sup>2+</sup> influx and Ca<sup>2+</sup> transients [14].

Considerable progress has been made in understanding how these Ca<sup>2+</sup> oscillations are generated and terminated, particularly in rodent eggs. The mechanism for generating Ca2+ release in fertilizing mouse eggs involves the InsP<sub>3</sub> receptor (InsP<sub>3</sub>R) which also contains the Ca<sup>2+</sup> channel responsible for Ca<sup>2+</sup> release from intracellular stores. Injection of functional inhibitory antibodies to the InsP<sub>3</sub>R can block all Ca<sup>2+</sup> oscillations at fertilization in hamster eggs [2]. In mouse eggs, the InsP<sub>3</sub>R has been shown to be down-regulated at fertilization, and since this only occurs when InsP3 levels are increased it is clear that the sperm causes an increase in InsP<sub>3</sub> levels in the egg [15]. Furthermore, the InsP<sub>3</sub>R can be down-regulated prior to fertilization by injection of the potent InsP<sub>3</sub>R agonist, adenophostin, into an immature oocyte. When this is done, and the oocyte is allowed to develop into a mature egg, the Ca<sup>2+</sup> oscillations and events of egg activation at fertilization are blocked [15]. These data suggest that the InsP<sub>3</sub> pathway is essential for sperm-induced Ca<sup>2+</sup> oscillations, and they reconfirm that Ca<sup>2+</sup> oscillations are the physiological pathway for egg activation. There are no consistent indications that other Ca<sup>2+</sup> releasing messengers such as cyclic ADP ribose or NAADP cause physiological Ca<sup>2+</sup> release in mouse eggs. The essential question for understanding signalling during egg activation is how the sperm generates the InsP3 to stimulate release via the InsP<sub>3</sub>R. This review describes what we know, and need to know, about how PLCζ generates InsP<sub>3</sub> and Ca<sup>2+</sup>

oscillations at fertilization in mammalian eggs [16]. We do not cover all aspects of PLC $\zeta$  as other reviews are available for more in depth discussion of the structure of PLC $\zeta$  or its role in human fertility [17,18].

## 2. PLC $\zeta$ as the soluble sperm factor that triggers Ca<sup>2+</sup> oscillations in eggs

The early models of InsP<sub>3</sub> production and Ca<sup>2+</sup> release at fertilization suggested that the sperm acted upon egg surface membrane receptors that would then stimulate a PLC of the  $\beta$  or  $\gamma$  class to hydrolyse PI(4,5)P<sub>2</sub> in the plasma membrane [3]. In the mouse, it has been shown that sperm-egg fusion occurs before Ca<sup>2+</sup> release by many seconds, and that fusion is a prerequisite for initiating Ca<sup>2+</sup> oscillations [19,20]. So there is no need for a hormone-like trans-membrane signalling event. Measurements of Ca<sup>2+</sup> level in the sperm and egg just after membrane fusion show the sperm has a low Ca<sup>2+</sup> concentration, just like that of the unfertilized eggs [20]. Consequently, the idea that the sperm itself introduces Ca<sup>2+</sup> to help trigger further Ca<sup>2+</sup> oscillations in the egg, *via* the well-known Ca<sup>2+</sup> induced Ca<sup>2+</sup> release phenomenon, lacks support. The simplest idea to explain sperm-induced Ca<sup>2+</sup> release is that the sperm introduces a protein factor into the egg cytoplasm after membrane fusion. Microinjection of sperm extracts has been shown to cause Ca<sup>2+</sup> oscillations very similar to those at fertilization in hamster, mouse, pig and cow eggs [21,22]. The factor is not species-specific as sperm extracts from a wide range of species can trigger Ca<sup>2+</sup> oscillations in mouse eggs, which appear to represent one of the most sensitive species of eggs to the Ca<sup>2+</sup> releasing effect of sperm extracts. The sperm factor was shown to be a heat-sensitive protein that is sperm-specific [21,22]. The existence of such a sperm factor was also suggested by the clinical use of intra-cytoplasmic sperm injection (ICSI), where a sperm is injected into an egg to overcome cases of male factor infertility. ICSI in mouse and human eggs has

## Download English Version:

# https://daneshyari.com/en/article/2166135

Download Persian Version:

https://daneshyari.com/article/2166135

<u>Daneshyari.com</u>