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Abstract

Mathematical modeling for dynamic biological systems is a central theme in systems biology. There are still many challenges in using time-

course data to obtain an inverse problem of nonlinear dynamic biological systems. In this study, a multi-objective optimization technique is

introduced to determine kinetic parameter values of biochemical reaction systems. The multi-objective parameter estimation was converted into

the minimax problem through the satisfying trade-off method. The aspiration value was assigned as the minimum solution to the corresponding

single objective estimation. The aim of this trade-off estimation was to obtain a compromised result by simultaneously minimizing both

concentration and slope error criteria. Hybrid differential evolution was applied to solve the minimax problem and to yield a global estimation.
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1. Introduction

Mathematical models describing the behavior of micro-

biological systems are attracting increasing attention in the post-

genomic era (Voit, 2002). Such mathematical models provide a

description of mechanism of biological systems which are

required for analysis, design, optimization and control. The

ultimate goal of mathematical modeling is to obtain an

expression that quantitatively describes the dynamic behaviors

of the system under consideration. The generality of a model

depends upon several factors, which include the system’s

complexity and available information. Biochemical Systems

Theory (BST) comes in two variants: generalized mass action

(GMA) and S-system forms (Savageau, 1976; Voit, 2000). These

offer alternative options for representing complex metabolic

pathway systems. For the identification of structure from time-

course data the S-system model is particularly useful, especially

if limited additional information about the biological system is

available. The flux aggregation is applied in S-systems to model

branch and reverse pathways so some difficulties, such as mass

conservation at a branch point, arise when dealing with networks

of interacting biochemical reactions that feature branch and

reverse pathways. The GMA model is better able to capture

realistic reaction information such as branch or reverse pathways

and greatly increases the mathematical tractability of the system

while preserving its nonlinear nature (Marı́n-Sanguino and

Torres, 2003; Polisetty et al., 2006). The aim of this study is to

introduce a multi-objective optimization approach to determine

kinetic parameter values in GMA/S-system models using time-

course observations.

Parameter estimation is an essential step in the verification

and subsequent use of a mathematical model in the field of

biological systems. There exists, however, no unique method to

estimate model parameters for nonlinear power-law models

(Chou et al., 2006). Most of the traditional nonlinear regression

algorithms based on gradient methods have the possibility of

getting trapped at local optima, depending upon the degree of

system nonlinearity and the initial starting point (Mendes and

Kell, 1998). Alternating regression (Chou et al., 2006) dissects

the nonlinear inverse problem of estimating parameter values

into iterative steps of linear regression. The branch and bound

algorithm (Polisetty et al., 2006) is applied to convert the

inverse problem of GMA or S-system into a convex

optimization problem in order to obtain a global solution.

Numerical integration for solving differential equations is

another issue for inverse problems. It is time-consuming and may

break down during the optimization searching. Tsai and Wang

(2005) have compared three techniques of parameter estimation

for nonlinear dynamic biological systems. Time-course slope

information for a dynamic system has been applied to avoid
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numerical integration; using the dynamic model to compute the

slope error information can alleviate computational burden (Lall

and Voit, 2005; Voit, 2000; Voit and Almeida, 2004). As

discussed in Voit (2000), very small error values may be obtained

from a time-course slope. However, dynamic profiles of the

model may not be adequate at the experimental concentrations.

Tsai and Wang (2005) have applied hybrid differential evolution

with the modified collocation method to determine the model

parameters of the S-system. The modified collocation method is

applied to convert ordinary differential equations into algebraic

equations in order to yield approximate dynamic profiles. By

contrast, the modified collocation approximation may yield a

very small concentration error criterion value. However, when

the estimated parameters are applied to compute the slope profile,

this may yield a large slope error criterion. This indicates that the

characteristic for each dynamic function, equivalent to the net

rate equations, is different from the experimental observation.

Such estimated parameters are found, in general, to have poor

predictive ability. In this study, multi-objective parameter

estimation is introduced to simultaneously minimize both

criteria in order to overcome the drawbacks mentioned above

and to obtain a trade-off solution. Hybrid differential evolution is

then applied to solve the multi-objective parameter estimation

problem and move towards yielding an acceptable solution

(Wang and Sheu, 2000).

The paper is organized as follows. The following section

introduces single objective parameter estimation and multi-

objective approach. To illustrate the effectiveness of the

proposed algorithm, two dry-lab case studies and a single wet-

lab case study are presented in Section 3. Finally, concluding

remarks are made in Section 4.

2. Method

2.1. Single objective estimation

The metabolic reaction systems of a biological entity can be

described mathematically by GMA formulation, as follows

(Voit, 2000):
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where X represents n-dimensional components or pools, and

the parameter vector p consists of rate constants, aik and bik,

and kinetic orders, gijk and hijk. f is a vector of net rate equations.

Each element of f is composed of all production and degrada-

tion terms for the corresponding component. The parameter

estimation is to determine rate constants and kinetic orders so

that the dynamic profiles satisfactorily fit the measured obser-

vation.

Since we have no information on most of the model

parameters, we must infer them from the data. Therefore, we

optimize an error criterion which measures the discrepancy of

simulated data from the real data. The error criterion in

conventional parameter estimation techniques is evaluated

from the measured concentrations and dynamic profiles

computed using ordinary differential equations. Such a

criterion is expressed as
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where XeiðtsÞ is the measured data for the ith component at

t = ts, Xi(ts) is the computed concentration for the ith component

at t = ts, and Xeimax is the maximum measured concentration of

the ith component. Here, Ns is the number of sampled data

points and Nexp is the number of experiments. The time

weighting factor ts is added in the criterion to highlight that

the estimated result is more important as the time progress. Tsai

and Wang (2005) have applied the modified collocation method

(Wang, 2000) to convert ordinary differential equations into

algebraic equations to yield the approximate dynamic profiles

as follows:
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The approximate profiles can be directly applied to evaluate the

error criterion as shown in Eq. (2) to avoid numerical integra-

tion for dynamic Eq. (1). The decomposition strategy has been

previously applied to solve differential equations in parallel to

Nomenclature

f i kinetic order for GMA model

gij kinetic order for generation

hij kinetic order for degradation

Ĵi aspiration value

Ki kinetic parameters for Michaelis–Menten equa-

tion

Vmax
i kinetic parameters for Michaelis–Menten equa-

tion

Xi state variable

Greek symbols

ai rate constant for generation

bi rate constant for degradation

gij rate constant for GMA model

ni j influx into pool or efflux out of pool
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