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First, a simple relationship is derived between the diffusion-controlled current transient resulting from applica-
tion of a large potential step (PSCAmethod) and the diffusion impedance (EIS method) calculated at the equilib-
rium potential of a uniformly accessible electrode when a one-step redox reaction takes place at the electrode
surface. The derivation is valid under one-dimensional (1D) diffusion conditions in the electrolyte, assuming in
addition the same diffusion coefficient for both redox species involved in the electrochemical reaction. The the-
oretical relationship also applies to 2D diffusion from/towards an inlaid (micro)disk electrode provided the elec-
tron transfer reaction displays reversible kinetics at the electrode surface. Accurate values for the diffusion
impedance at the equilibrium potential of (micro)disk electrode are obtained starting from the explicit formula-
tion of thediffusion-controlled current transient in the article by L.K. Bieniasz, Electrochim. Acta 199 (2016) 1–11.
These values can be used as benchmark data for checking the accuracy of numerical methods, e.g. finite element
methods, employed for solving the initial boundary value problem under consideration. Finally, approximation
formulae are derived for the diffusion impedance either in closed form or using a representation model together
with a complex nonlinear least squares procedure.
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1. Introduction

An extensive literature is devoted to theoretical modelling of elec-
trochemical experiments on (micro)disk electrodes embedded in an in-
sulating surface, e.g. in the textbooks [1–5].1 In this article, we focus on
simple (one-step) electrochemical reactions investigated on such elec-
trodes by potential step chronoamperometry (PSCA) which is a large
signal method in the time domain, and by electrochemical impedance
spectroscopy (EIS) which is a small signal method in the frequency do-
main, and, more especially, on the theoretical relationship between the
PSCA and EIS responses of such electrodes.

Modelling of the diffusion-controlled faradaic current, Id (t),
resulting from application of a large potential step to an inlaid disk elec-
trode, has received much attention in the electrochemical literature.
Several approximations for the faradaic current transient were derived
in previous works by Phillips and Jansons [6], Aoki and Osteryoung
[7], Shoup and Szabo [8], Rajendran and Sangaranarayanan [9] and

Mahon and Oldham [10,11], among other authors. Britz et al. [12,13]
employed conformal mapping computation procedures for checking
the prediction accuracy from the above approximations.

Recently, Bieniasz [14] derived an explicit formulation for the di-
mensionless current, ψd(t)= Id(t)/Id(∞), as a function of the dimension-
less time, T=Dt/re2, in terms of inverse Laplace transform of an infinite
series involving spheroidal wave functions [15]. Here D is the diffusion
coefficient of redox species, re is the disk radius, and Id(∞) denotes the
steady-state current observed at long times. This author obtained highly
accurate values of ψd(T) using a Mathematica “Spheroidal” package de-
veloped by Graham [16], together with the Gaver-Wynn-rho algorithm
proposed by Valkó and Abate [17] for numerical inversion of Laplace
transforms. Such values should provide benchmark data for checking
the computation accuracy of numerical methods, e.g. finite difference
and finite element methods employed to solve the initial boundary
value problem for diffusion of redox species from/towards an inlaid
(micro)disk electrode.

On the other hand, only a few articles dealt with the impedance of a
(micro)disk electrode inlaid in an insulating surface, when a redox reac-
tion takes place at the electrode surface together with semi-infinite dif-
fusion of electroactive species in the electrolyte. The analysis presented
by Fleischmann and Pons [18] opened up the use of microelectrodes in
impedance measurements. They presented their numerical data in the
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form of tabulated functions. Some additional information is available
from the work by Navarro-Laboulais et al. [19]. An algorithm for calcu-
lation of the (micro)disk impedance was outlined by these authors for
its implementation in complex nonlinear least squares fitting (CNLS-
Fit) programs.

An alternative approach for computing the impedance of
(micro)disk electrodes is based on finite element analysis. The
pioneering work on this subject was that of Ferrigno and Girault [20],
which was focused on the axisymmetric recessed microdisk geometry.
Gabrielli et al. [21,22] used COMSOL Multiphysics (formerly FEMLAB)
software for numerical simulation of the impedance of an inlaid disk
electrode. These authors investigated the influence of the disk radius
and the total electrode radius (electroactive disk + insulating sheath)
on the impedance diagram. More recently, Michel et al. [23] computed
the impedance of (micro)disk electrode using a finite element method
(FEM) together with a self-adaptive anisotropic mesh refinement strat-
egy [24,25].

The first aim of the presentwork is to derive the theoretical relation-
ship between the diffusion-controlled faradaic current Id(t) (PSCA
method) and the diffusion impedance Zd(ω) (EIS method) calculated
at the equilibrium potential of a uniformly accessible electrode when a
one-step redox reaction takes place at the electrode surface. The deriva-
tion is reported in Section 2 under the assumption of one-dimensional
(1D) mass transport conditions in the electrolyte.

The theoretical relationship derived under 1D conditions also ap-
plies to 2D diffusion from/towards an inlaid (micro)disk electrode pro-
vided the electron transfer reaction displays reversible kinetics at the
electrode surface. Accurate computation of the diffusion impedance
for a (micro)disk electrode from its PSCA response is presented in
Section 3 as an application example. Finally, Section 4 deals with the
derivation of approximate formulae for the diffusion impedance of
(micro)disk electrode either in closed form or using a representation
model (modified Voigt circuit) together with a complex nonlinear
least squares procedure.

2. Derivation under 1D mass transport conditions

Starting from the general formalism for linear systems developed
years ago by Rangarajan [26], but using different notation, the mass
transfer function relative to a soluble species X involved in an electro-
chemical reaction is defined by the ratio of Laplace transforms [27]:

MX pð Þ ¼ L ΔcsX tð Þ� �
L Δ JsX tð Þ� � ¼ ΔcsX pð Þ

Δ JsX pð Þ
ð1Þ

whereL is the Laplace operator, the symbol ‘upper-bar’ denotes Laplace
transformed quantities with the complex variable p, and the symbol Δ
stands for deviation from the initial value, e.g. ΔcXs (t)=cX

s (t)−cX
∗ for

the interfacial concentration. Mathematically speaking, MX(p) is the
concentration-flux transfer function evaluated at the electrode surface
(superscript ‘s’). Using Eq. (1), we tacitly assume uniform accessibility
of the electrode, and therefore 1Dmass transport conditions for species
X. A lot of closed-form expressions for themass transfer functionMX(p)
are available from the electrochemical literature [26–35].2

Let us consider the electrochemical reaction, X−ze↔products, in-
volving the soluble species X. The stoichiometric number z is positive/
negative for oxidation/reduction of species X in the forward direction.
A large potential step is applied to the electrode at t=0, so that the in-
terfacial concentration of species X drops from its initial value cX∗ to zero

at t=0+. The diffusion-controlled faradaic current transient (subscript
‘d’) can be derived as a function of time from [33]:

Id tð Þ ¼ zFAc�XL
−1 1

pMX pð Þ ð2Þ

where A is the electrode area, F is Faraday's constant, and L−1 denotes
the inverse Laplace transformation.

In the special case where the limit, lim
p→0

MXðpÞ ¼ m−1
X , is real, which

corresponds to non-blocking mass transport conditions, application of
the final value theorem to Eq. (2) yields the steady-state current
which is observed at long times:

Id ∞ð Þ ¼ zFAmXc�X ð3Þ

For example, the above equation applies to a hemispherical elec-
trode with radius re and mass transport constant mX=DX/re, as well
as to a rotating disk electrodewithmX=DX/δX, and δX being the charac-
teristic length for diffusion-convection taken from Levich theory [36].

Setting ψd(t)= Id(t)/Id(∞) and MX
∗ (p)=mXMX(p), one obtains the

normalized relationship from Eqs. (2) and (3):

ψd tð Þ ¼ L−1 1
pM�

X pð Þ ð4Þ

In a previous work [28], we showed that the dimensionless mass
transfer function is equal to the dimensionless concentration imped-
ance:

M�
X pð Þ ¼ Z�

X pð Þ ¼ ZX pð Þ
RX

ð5Þ

where ZX(p) is the concentration impedance pertaining to species X,
and RX ¼ lim

p→0
ZXðpÞ is the associated resistance. From Eqs. (4) and (5),

it follows that:

ψd tð Þ ¼ L−1 1
pZ�

X pð Þ ð6Þ

Now, let us consider the so-called E reaction [1], A↔B+ze, involv-
ing two soluble species A and B. The faradaic impedance relative to
this reaction is the sum of the electron transfer resistance and the con-
centration impedances ZA(p) and ZB(p), with the diffusion impedance
being the sum, Zd(p)=ZA(p)+ZB(p). Further simplification is possible
when the faradaic impedance is computed at the equilibrium potential
of the electrode (subscript ‘eq’), because of [37]:

ZX;eq pð Þ ¼ MX pð Þ
z2fFc�X

ð7Þ

where f=F/(RTK) is Nernst constant, F and R have their usual meaning,
and TK denotes the absolute temperature. In the sameway, the concen-
tration resistance at equilibrium is given by:

RX;eq ¼ 1
z2fFmXc�X

ð8Þ

The diffusion impedance pertaining to E reaction at the equilibrium
potential is:

Zd;eq pð Þ ¼ 1
z2fF

MA pð Þ
c�A

þMB pð Þ
c�B

� �
ð9Þ

2 Note that the symbol Δmeans a small deviation in the context of EIS method. Never-
theless, Eq. (1) should also apply to large signal methods, e.g. PSCA, whenmass transport
of species X is modelled by linear equations, mathematically speaking.
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