
Contents lists available at ScienceDirect

Flora

journal homepage: www.elsevier.com/locate/flora

Dispersal ability of island endemic plants: What can we learn using multiple dispersal traits?

^a Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague 2, CZ-128 01, Czech Republic ^b Institute of Botany, Academy of Sciences of the Czech Republic, Lesní 322, Průhonice, CZ-252 43, Czech Republic

ARTICLE INFO

Article history: Received 17 February 2014 Received in revised form 26 May 2014 Accepted 26 May 2014 Edited by Brigitta Erschbamer Available online 17 June 2014

Keywords: Dispersal mode Long-distance dispersal Macaronesia Terminal velocity

ABSTRACT

Island endemic species are expected to have lower dispersal ability than their non-endemic congeners. Several studies have demonstrated differences in diaspore morphology between endemic species and their non-endemic congeners. It is, however, relatively difficult to translate the differences in morphology of the diaspores into differences in dispersal ability. To avoid this problem, we measured directly dispersal values (anemo-, hydro-, exozoo- and endozoo-chory) of 27 pairs of closely related endemic and non-endemic species from Canary Islands. We did not explicitly support the hypothesis about the loss of dispersal ability of island species. The comparison of pairs of endemic and non-endemic species showed the reduction in dispersal potential only for endozoochory. In many cases, endemic species had, in fact, the same or better dispersal ability than their non-endemic congeners. Higher dispersal to neighboring islands. As a support for this we found that the endemic species dispersing better than their non-endemic congeners also occupy more islands within the archipelago. We conclude that reduction of dispersal ability of species on islands may not be as general as previously expected and we need to take into account multiple species traits to understand the possible evolution of species dispersal ability of species traits to understand the possible evolution of species dispersal dispersal to neighboring islands.

© 2014 Elsevier GmbH. All rights reserved.

Introduction

Oceanic islands have always fascinated scientists because of the various evolutionary phenomena arising from their specific conditions. One such phenomenon is the loss of dispersal ability of plant and animal species, which has been observed on many Pacific (Carlquist, 1965) and Atlantic islands (Talavera et al., 2012, 2013). According to Carlquist (1967) the main reason for the reduction of dispersal ability of island species is lower probability of propagules to be dispersed out to the sea. Additionally, due to relative stability of island habitats over time, species colonizing islands have no need to escape from such suitable sites (Cody and Overton, 1996; Kuno, 1981; McPeek and Holt, 1992).

According to these hypotheses, it could be predicted that selection will favor species with propagules of lower dispersability than was the dispersability of their ancestors when colonizing the island from the continent. Although the direct continental

* Corresponding author at: Charles University of Prague, Department of Botany, Benátska 2, 12801 Prague 2, Czech Republic. Tel.: +420 271015332.

E-mail address: vazacova@seznam.cz (K. Vazačová).

ancestors may not exist any longer, the reduction of dispersability can be studied from comparison of dispersal abilities between island endemics and their continental relatives, as it was done by Carlquist (1974) on diaspores of various Hawaiian species. Carlquist (1974) demonstrated the loss of dispersal ability mainly as a reduction of seed morphological parameters enabling species to disperse.

A well-known example is the example of reduction of the awn length in island species of Bidens when compared to their mainland relatives (Carlquist, 1966). Assessing dispersal abilities from diaspore morphological parameters is a common method used in many studies on species dispersal (e.g., Bernardello et al., 2006; Cody and Overton, 1996; Hughes et al., 1994; Matlack, 1987; Ridley, 1930; van der Pijl, 1982; Willson et al., 1990). However, diaspore morphology may not always be a sufficient predictor of dispersal ability (Willson et al., 1990). This could be the reason, why Lavergne et al. (2004) did not find any differences between dispersal ability (estimated from parameters such as pappus length and surface) of 6 congeneric pairs of endemic and nonendemic species from the French Mediterranean region. As Sheldon and Burrows (1973) demonstrated on 18 species of the family Compositae, the differences in dispersal ability are given more likely in fine details of diaspore morphology such as the

possession of hairs on achenes which are, however, not easily measurable. In fact, species with no apparent morphological adaptation can be also successfully dispersed as shown by e.g., Couvreur et al. (2004), Fischer et al. (1996); Heinken and Raudnitschka (2002) and Vargas et al. (2012). As a consequence, the results based on diaspore morphological parameters can differ from the results based on direct measurements of diaspore dispersal ability as demonstrated by Fresnillo and Ehlers (2008) on mainland and island populations.

In contrast to morphological parameters, direct determination of diaspore dispersal ability enables the estimation of the dispersal ability of all species by multiple vectors reducing the risk of overlooking an important dispersal agent in each particular species. Unlike morphological parameters, the values describing dispersal ability by different vectors are transferable into dispersal distances (e.g., Tackenberg et al., 2003; Will and Tackenberg, 2008) and thus, are more appropriate for studying large groups of species with a large variation in diaspore types. Although the methodology for estimating dispersal ability of species by different modes (anemo-, hydro-, exo-, endozoochory, Knevel et al., 2005; Vazačová and Münzbergová, 2013) is well-elaborated, most studies are focused usually on one, most easily quantifiable vector. Such approach may, however, underestimate the real dispersal ability of the studied species because they usually do not disperse by only a single dispersal vector (Nathan, 2007; Vargas et al., 2012).

The comparison of traits between endemic and non-endemic species can also shed light on the evolutionary potential of different traits. The papers exploring the evolution of woodiness, growth form or floral type of island plants demonstrated that some traits are conserved remaining almost unchanged during evolution

Table 1

List of 27 species pairs used in the study (the first mentioned is endemic species).

Species name ^a	Family	Phylogeny	Analysed propagule
Artemisia thuscula Cav. Artemisia reptans C. Sm. in Buch	Asteraceae	Sanz et al., 2008	Seed
Asteriscus graveolens ssp. stenophyllus (Link) Greuter Asteriscus aquaticus (L.) Less.	Asteraceae	Goertzen et al., 2002	Achene (with pappus)
Atractylis preauxiana Sch. Bip. Atractylis cancellata L.	Asteraceae	No	Achene (with pappus)
Brachypodium arbuscula Knoche	Poaceae	Catalán and Olmstead, 2000	Seed
Brachypodium sylvaticum (Huds.) P. Beauv. Carex canariensis Kük.	Cyperaceae	Hendrichs et al., 2004	(with glumes) Seed
Carex divulsa ssp. divulsa Stokes Cistus ocreatus C. Sm. in L. von Buch	Cistaceae	Guzmán and Vargas, 2010	(with utricle) Seed
Cistus monspeliensis L. Echium wildpretii ssp. wildpretii Pearson ex Hook. f.	Boraginaceae	Böhle et al., 1996	Seed
Echium plantagineum L. Erica platycodon spp. platycodon (Webb and Berthel.) Rivas-Mart. and al.	Ericaceae	McGuire and Kron, 2005	plus calyx Seed
Erica arborea L. Euphorbia atropurpurea (Brouss.) Webb & Berthel.	Euphorbiaceae	Barres et al., 2011	Seed
Euphorbia regis-jubae Webb & Berthel. Geranium reuteri Aedo and Muńoz Garm.	Geraniaceae	Based only on morphology	Seed
Geranium robertianum L. Helianthemum thymiphyllum Svent.	Cistaceae	Yeo, 1973 No	Seed
Helianthemum canariense (Jacq.) Pers. Hypericum glandulosum Aiton	Hypericaceae	No	Seed
Hypericum perforatum L. Lotus tenellus Dryand. in Aiton	Fabaceae	No	Seed
Lotus glinoides Delile Pancratium canariense Ker-Gawl.	Amaryllidaceae	No	Seed ^b
Pancratium maritimum L. Phagnalon umbelliforme DC.	Asteraceae	Montes-Moreno et al., 2010	Achene
Phagnalon saxatile (L.) Cass. Plantago arborescens ssp. arborescens Poir.	Plantaginaceae	Rahn, 1996	(with pappus) Seed
Plantago afra L. Polycarpaea aristata (Aiton) DC.	Caryophyllaceae	No	Seed
Polycarpaea nivea (Aiton) Webb Reichardia ligulata (Vent.) G. Kunkel & Sunding	Asteraceae	Kim et al., 2007	Achene
Reichardia tingitana (L.) Roth Reseda crystallina Webb and Berthel.	Resedaceae	Martín-Bravo et al., 2007	(with pappus) Seed
Reseda luteola L. Rumex lunaria L.	Polygonaceae	Navajas-Pérez et al., 2005	Achene
Rumex vesicarius L. Salvia canariensis L.	Lamiaceae	Walker and Sytsma, 2007	Seed
Salvia aegyptiaca L. Scrophularia smithii ssp. smithii Hornem.	Scrophulariaceae	No	Seed
Scrophularia arguta Sol. ex Aiton Senecio palmensis (C. Sm. in Buch) Link	Asteraceae	No	Achene
Senecio glaucus ssp. coronopifolius (Maire) C. Alexander Solanum vespertilio Aiton	Solanaceae	No	(with pappus) Seed
Solanum nigrum L. Sonchus canariensis ssp. canariensis (Sch. Bip.) Boulos	Asteraceae	Kim et al., 1996	Achene
Sonchus oleraceus L. Tolpis laciniata (Sch. Bip. ex Webb & Berthel.) Webb	Asteraceae	Moore et al., 2002	(with pappus) Achen
Tolpis barbata (L.) Gaertn. Vicia cirrhosa C. Sm. ex Webb & Berthel. Vicia hirsuta (L.) S. F. Gray	Fabaceae	Leht, 2005	(with pappus) Seed

^a The species names according to Arechavaleta et al. (2010).

^b Diaspores from the Botanical Garden.

Download English Version:

https://daneshyari.com/en/article/2179512

Download Persian Version:

https://daneshyari.com/article/2179512

Daneshyari.com