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By generalising the recent theory of chronoamperometry [L. K. Bieniasz, Electrochim. Acta 178 (2015) 25], a new,
semi-analytical description of reversible cyclic voltammetry at amicrobandelectrode is obtained, assuming equal
diffusion coefficients of the species involved in a redox reaction. In contrast to the formerly proposed model [K.
Aoki, K. Tokuda, J. Electroanal. Chem. 237 (1987) 163], the new theory does not involve any heuristic approxima-
tions. It is based on the formalism of Mathieu equations and functions, and provides rigorous and complete ex-
pressions for the voltammetric current, in the form of either a convolution integral or an integral equation. The
voltammograms are calculated automatically with a prescribed accuracy, by using either the adaptive integrator
dqags from the QUADPACK package, or the adaptive Huber method for integral equations. The two methods are
compared, and dqags is found to be more efficient. A highly accurate (relative error about 10−16) procedure for
calculating the kernel function of the integral equation, and its moment integrals, is also described.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of the present paper is to describe novel results
concerning the theory and computation of cyclic voltammograms for a
reversible redox reaction at a microband electrode embedded flush in
an insulator plane. Voltammograms of this type are studied routinely
in contemporary electrochemistry, since both cyclic voltammetry and
band microelectrodes belong to standard electroanalytical techniques
[1]. However, we shall show that despite former modelling studies
[2–9] there is still a place for a new, previously unknownmathematical
description of such voltammograms.

Among the various modelling approaches to microelectrodes [10],
the most straightforward are direct digital simulations [11,12] by nu-
merically solving diffusion partial differential equations (PDEs). Such
simulations, employing finite difference or other direct methods, were
performed for the present electroanalytical experiment by a number
of authors [2,3,7–9]. The microelectrode simulations involve two-
dimensional spatial domains and are, in consequence, computationally
expensive. The use of various conformal transformations of spatial coor-
dinates can speed up the calculations [11,12], but computational costs
nevertheless limit practically achievable relative errors of the numerical
solutions to (at best) about 10−2−10−5. Apart from this limitation,
digital simulation returns nothing more than just numerical values of
the model solutions. It does not necessarily offer insights into the
theoretical relationships. This observation is not a critique of digital

simulation which for many complexmodels is indispensable. However,
it is a good scientific practice to look for analytical or semi-analytical
solutions of electroanalytical models, whenever there is a chance of
obtaining such solutions, even though the use of digital simulation
might be easier. Derivations of (semi-)analytical solutions improve
our understanding of the models. An availability of various alternative
theoretical descriptions of electroanalytical experiments can also help
avoiding misinterpretations caused by blind uses of modern electroan-
alytical hardware and software [13].

One interesting alternative to direct digital simulations of voltamm-
etry at amicroband electrode is offered by the two-dimensional integral
equation (IE) approach of Mirkin and Bard [5,6]. A partially analytical
solution of the diffusion PDEs leads to IEs for the Faradaic current den-
sity distribution across themicroband. This approach is a natural gener-
alisation of the classical one-dimensional IE method for spatially one-
dimensional models [14], and it can be applied to any controlled poten-
tial transient experiments, not only to voltammetry. Numerical solution
of the resulting IEs should be faster than the aforementioned direct dig-
ital simulation, because one spatial dimension is eliminated in the pro-
cess of deriving the IEs. However, we shall not follow this theoretical
route, because satisfactory numerical techniques for solving the Mirkin
and Bard IEs still have to be designed.

Instead,we shall explore another theoretical route, similar to that re-
cently applied to obtain a complete rigorous semi-analytical solution for
the chronoamperometric limiting current at a microband [15], and a
highly accurate approximation to this current [16]. We shall obtain rig-
orous and complete semi-analytical expressions for cyclic voltammo-
grams in the case of equal diffusion coefficients of the redox couple,
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by using the formalism of Mathieu equations and functions [17]. This
will allow us to determine the voltammograms in two alternative
ways. One way will be analogous to that used by Aoki and Tokuda [4],
who related the voltammetric current with the chronoamperometric
limiting current. However, in contrast to Aoki and Tokuda we shall de-
rive a rigorous integral formula for the voltammogram, rather than an
approximate heuristic formula obtained in Ref. [4]. The second way
will yield the voltammetric current as a solution of a one-dimensional
IE similar to those encountered in spatially one-dimensional electroan-
alytical models [14]. A rigorous formula for the kernel of this IE will be
derived. A highly accurate procedure for computing this kernel function
(and its moment integrals) will also be presented.

Both ways of deriving the voltammograms will be followed by nu-
merical computations. To comply with the modern standards of scien-
tific computing, we shall utilise adaptive techniques that allow one to
automatically achieve a prescribed accuracy. Hence, for evaluating the
voltammetric current as an integral we shall use an adaptive quadra-
ture. For solving the IE the adaptive Huber method [14,18–21] for
one-dimensional electrochemical IEs will be used, in a way very similar
to solving IEs describing transient experiments at a cylindrical (or
hemicylindrical) microelectrode [22,23]. The latter microelectrode is
often compared to, and regarded similar to the microband [3,24–26].
This will be the first application of one-dimensional IEs to themodelling
of transient experiments at a microband, in contrast to the modelling of
voltammetry at a microdisk electrode, which has already been accom-
plished in this way [27–29] (Ref. [29] was based on a previous paper
written in Chinese [28], which makes both papers difficult to under-
stand, at least for the present author. One unclear aspect is whether it
is correct to replace two-dimensional IEs, that rigorously represent
suchmodels [5,6], by one-dimensional IEs, when the electrode reaction
is quasi-reversible, as was done in Ref. [29]. Available knowledge sug-
gests that such a replacement is possible when the concentrations of
the reactants are uniform along the electrode surface. However, for
quasi-reversible redox reactions they cannot be uniform). Since in
one-dimensional IEs both spatial dimensions are eliminated, their nu-
merical solution is, of course, faster than the solution of the Mirkin
and Bard IEs.

There exists at least onemore, potentially applicable, method of cal-
culating the voltammograms. It is the method that relies on the super-
position of chronoamperometric responses corresponding to a
sequence of discrete potential values [30–32]. This method will not be
used here, for reasons that will be given later.

Cyclic voltammograms calculated accurately by either of the above
two routes can find application in the analysis of experimental voltam-
mograms atmicroband electrodes, or they can serve for testing/validat-
ing various other modelling methods. The highly accurate procedures
for computing the kernel function and its moment integrals can also
allow one to perform the so-called convolutive analysis of experimental
transients. The convolutive analysis presents a challenge in the case of
microelectrodes, due to the still limited knowledge of the kernel func-
tions [33,34].

2. Theory

We retain here the following idealisations adopted in Refs. [2–8,15,
16]: an effectively infinite microband (implying a translational symme-
try of the mathematical model); an infinite electrode-insulator plane; a
semi-infinite electrolyte phase; a single electrochemical reaction un-
complicated by homogeneous or heterogeneous non-electrochemical
reactions; purely diffusional transport of the reactants; neglection of ad-
ditional effects such as natural convection, double layer charging, or
ohmic potential drops.

We thus consider the Nernstian redox reaction

Oþ ne−⇌R ð1Þ

taking place at themicroband, with O and R being the species subject to
diffusion in the electrolyte. Any controlled potential transient experi-
ment for this reaction is described by the following initial boundary
value problem (IBVP), formulated in the Cartesian coordinate system
(x,y,z). Diffusion PDEs are:

∂cX x; z; tð Þ
∂t

¼ DX
∂2cX x; z; tð Þ

∂x2
þ ∂2cX x; z; tð Þ

∂z2

" #
; ð2Þ

where X stands for O or R, cX(x,z,t) denotes the concentration of a spe-
cies X, and DX is its diffusion coefficient. We assume that the electrode
and the insulator surfaces coincide with the x−y plane, and that the
electrode is located at −a/2bxba/2 and −∞ byb∞, where a is the
electrode width. The insulator is located at −∞ bxb−a/2, a/2bxb∞,
and −∞ byb∞. The electrolyte phase corresponds to zN0. Owing to
the translational symmetry in the direction of y, the IBVP does not de-
pend on the y coordinate. Owing to the symmetry of the IBVP with re-
spect to the y−z plane, the spatial domain is usually further restricted
to the xN0, zN0 quadrant of the x−z plane.

For fixing attention, we consider a transient experiment that begins
with the electroreduction reaction (1), but the formulae providedbelow
are equally well applicable for oxidation, after appropriate sign chang-
ing. Hence, assuming that the reaction product is not initially present,
initial conditions are:

cO x; z;0ð Þ ¼ c⋆; ð3Þ

cR x; z;0ð Þ ¼ 0; ð4Þ

where c⋆ is the initial uniform concentration. Boundary conditions (all
holding at tN0) are as follows. At the electrode surface (x−y plane,
0bxba/2) the Nernst equation and the balance of fluxes must be
obeyed:

cO x;0; tð Þ=cR x;0; tð Þ ¼ exp
nF
RT

E tð Þ−E0
h i� �

; ð5Þ

DO
∂cO x; z; tð Þ

∂z

����
z¼0

þ DR
∂cR x; z; tð Þ

∂z

����
z¼0

¼ 0: ð6Þ

In Eq. (5) E(t) is the electrode potential perturbation, E0 is the condition-
al potential of reaction (1), and F, R, and T have their usual meaning. At
the insulator surface (x−y plane, a/2bxb∞) the no-flux boundary con-
ditions express the lack of consumption of the species at the insulator
surface:

∂cO x; z; tð Þ
∂z

����
z¼0

¼ ∂cR x; z; tð Þ
∂z

����
z¼0

¼ 0 ð7Þ

In the electrolyte bulk the concentrations remain unperturbed from
their initial values:

cO ∞; z; tð Þ ¼ cO x;∞; tð Þ ¼ c⋆; ð8Þ

cR ∞; z; tð Þ ¼ cR x;∞; tð Þ ¼ 0: ð9Þ

At the symmetry plane y−z one usually assumes the boundary
conditions:

∂cO x; z; tð Þ
∂x

����
x¼0

¼ ∂cR x; z; tð Þ
∂x

����
x¼0

¼ 0: ð10Þ

When solving the IBVP (2)–(10), one is primarily interested in
obtaining theoretical predictions for the Faradaic current density
j(x, t), and the Faradaic current i(t) (per unit length of the microband),
since the current is the usual experimental observable. The unknowns
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