

Review

Insights to fungal biology through LaeA sleuthing

Sachin JAIN^a, Nancy KELLER^{a,b,*}

^aDepartment of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706, USA ^bDepartment of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA

ARTICLE INFO

Article history: Received 9 April 2013 Accepted 27 May 2013

Keywords: Ascomycete LaeA Microarray Pathogenesis Secondary metabolism Sporulation VeA

ABSTRACT

LaeA was first identified as a novel Aspergillus nuclear protein which functions as a global regulator of secondary metabolism, morphogenetic development, and antibiotic production in various filamentous fungi. Since then, it has been studied extensively by research groups around the world in order to identify virulence factors, transcription factors and/ or cryptic secondary metabolite gene clusters regulated by LaeA. The coupling of LaeA with VeA and VelB as a nuclear complex, the "Velvet Complex", has greatly impacted our understanding of transcriptional complexes in filamentous fungi and their association with epigenetic processes. This review will highlight insights into fungal biology by LaeA-led studies and areas of research that need further investigation.

© 2013 Published by Elsevier Ltd on behalf of The British Mycological Society.

1. Introduction

As a taxon, the Kingdom Fungi is renown for production of diverse secondary metabolites also referred to as natural products. These secondary metabolites are of intense interest to humankind as their activities range from extremely harmful (e.g. aflatoxin) to medically beneficial (e.g. penicillin). It has become increasingly clear that the particular set of secondary metabolites produced by any one species is likely contributing to niche specialization. For many decades it has been known that certain host specific toxins are equated with virulence in certain plant pathogenic fungi (e.g. T-toxin production by *Cochliobolus heterostrophus*). Also, beyond these clearcut cases, secondary metabolites have been shown to contribute to virulence of human pathogens (Ben-Ami *et al.*, 2009; Yin *et al.*, 2013a; Liu and Nizet, 2009), production against fungivores (Rohlfs et al., 2007; Rohlfs and Churchill, 2011) and abiotic stress like UV, etc. (Kawamura et al., 1999). The development of medicinal and biotechnologically important compounds from fungal secondary metabolites has further increased interest in their production (Emri et al., 2013).

Early observations in secondary metabolite production in fungi showed that these metabolites are associated with morphological development of fungi, particularly sexual and asexual sporulation (Calvo *et al.*, 2002). Whereas several genetic studies indicated a linkage between both processes through signal transduction pathways (Hicks *et al.*, 1997; Shim and Woloshuk, 2001), it wasn't until the discovery of LaeA in 2004 (Bok and Keller, 2004) and the subsequent finding that it operates in a nuclear complex with VeA and VelB (Bayram *et al.*, 2008a), that a global regulatory process orchestrating secondary metabolism with fungal development was

^{*} Corresponding author. Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA. Tel.: +1 608 262 1958.

E-mail addresses: sachinj061@gmail.com (S. Jain), nancypulane@gmail.com, npkeller@wisc.edu (N. Keller). 1749-4613/\$ — see front matter © 2013 Published by Elsevier Ltd on behalf of The British Mycological Society. http://dx.doi.org/10.1016/j.fbr.2013.05.004

uncovered. LaeA, named for loss of *a*flR expression (AflR being the specific transcription factor regulation expression of genes in the aflatoxin and sterigmatocystin clusters, Woloshuk *et al.*, 1994; Fernandes *et al.*, 1998), is a novel methyltransferase whose S-adenosyl methionine (SAM) binding site is required for function (Bok *et al.*, 2006b; Patananan *et al.*, 2013). VeA and VelB are hypothesized to be DNA binding proteins although their exact function is not known (Bayram and Braus, 2012).

laeA deletants, first described in Aspergillus species, are reduced in the production of a multitude of secondary metabolites including sterigmatocystin, aflatoxin, penicillin, lovastatin, gliotoxin, endocrocin, and pseurotin (Amaike and Keller, 2009; Bok and Keller, 2004; Bok *et al.*, 2005; Brakhage, 2013; Vödisch *et al.*, 2011; Lim *et al.*, 2012). The impact of LaeA on fungal development and virulence was further deciphered through its partnering with VeA (Sarikaya Bayram *et al.*, 2010). VeA deletants display some but not all Δ laeA phenotypes as well as exhibit distinct characteristics not seen in Δ laeA strains (Bayram and Braus, 2012). The Velvet Complex trimer and its global impact on secondary metabolism and development is conserved in filamentous ascomycetes. Table 1 lists LaeA and VeA orthologs found in various fungal species. Our goal for this review is to briefly describe the known functions of LaeA followed by insights into fungal biology revealed by genetic and bioinformatic experimentation conducted on the protein itself and/or *laeA* mutants. Whereas much of the advances described below are "Aspergillus-centric", this is in large part due to the early discoveries in this genus and it is likely that many of the LaeA-led discoveries in Aspergillus will be applicable to other genera.

2. LaeA regulation of fungal development

Member of the Velvet Complex

As mentioned above, LaeA is a member of the Velvet Complex consisting of LaeA, VeA and VelB proteins. This complex was first described in *Aspergillus nidulans* but has since been characterized in several fungi (Hoff *et al.*, 2010; Wiemann *et al.*, 2010; Wu *et al.*, 2012 and Table 1). Both VeA and VelB, along with VosA and VelC, belong to the velvet family of fungal regulatory proteins (Bayram and Braus, 2012). This family of proteins is specific to fungi. Similarly to LaeA, VeA and VelB are known to be involved in various aspects of development and secondary metabolism in all ascomycetes where they have been studied, however fewer studies have addressed the role

Table 1 – LaeA and VeA orthologs in filamentous fungi			
Gene name	Species	Function ^a	Reference
LaeA			
LaeA	Aspergillus fumigatus	SM, D, V	Bok et al., 2005; Bok and Keller, 2004; Dagenais et al., 2010; Sugui et al., 2007: Ben-Ami et al., 2009
LaeA	Aspergillus nidulans	SM, D	Bok and Keller, 2004
Lae1	Trichoderma reesei	SM, D, O	Seiboth et al., 2012
LaeA	Fusarium oxysporum	SM, D, V	Lopez-Berges et al., 2013
Lae1	Fusarium verticillioides	SM	Butchko et al., 2012
ChLae1	Cochliobolus heterostrophus	SM, D, V	Wu et al., 2012
LaeA	Penicillium citrinum	SM	Baba et al., 2012
LaeA	Aspergillus flavus	SM, D, V	Amaike and Keller, 2011
PcLaeA	Penicillium chrysogenum	SM, D	Kamerewerd et al., 2011; Kosalková et al., 2009
LaeA	Aspergillus oryzae	SM	Oda et al., 2011
FfLae1	Fusarium fujikuroi	SM, D, V	Wiemann et al., 2010
LaeA	Monascus pilosus	SM, D	Lee et al., 2013; Zhang and Miyake, 2009
LaeA-like	Neotyphodium uncinatum	not assessed	Zhang et al., 2009
VeA			
VeA	Aspergillus nidulans	SM, D	Bayram et al., 2008a
VeA	Fusarium oxysporum	SM, D, V	Lopez-Berges et al., 2013
ChVel1	Cochliobolus heterostrophus	SM, D, V	Wu et al., 2012
BcVeA	Botrytis cinerea	SM, D, V	Yang et al., 2013
VeA	Penicillium citrinum	SM	Baba et al., 2012
VeA	Aspergillus flavus	SM, D, V	Amaike and Keller, 2011
PcVelA	Penicillium chrysogenum	SM, D	Kamerewerd et al., 2011
FfVel1	Fusarium fujikuroi	SM, D, V	Wiemann et al., 2010
VeA	Dothistroma septosporum	SM, D	Chettri et al., 2012
FgVeA	Fusarium graminearum	SM, D, V	Jiang et al., 2011; Merhej et al., 2012
VeA1	Histoplasma capsulatum	SM, D, V	Laskowski-Peak et al., 2012
VeA	Aspergillus fumigatus	SM, D, V	Dhingra et al., 2012
FvVE1	Fusarium verticillioides	SM, D	Li et al., 2006
VeA	Fusarium verticillioides	SM, D, V	Myung et al., 2012
MVE1	Mycosphaerella graminicola	SM, D	Choi and Goodwin, 2011
Ve1	Neurospora crassa	SM, D	Bayram et al., 2008b

a SM = secondary metabolism, D = fungal development, V = virulence, O = other.

Download English Version:

https://daneshyari.com/en/article/2180536

Download Persian Version:

https://daneshyari.com/article/2180536

Daneshyari.com