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Somegeneral characteristics of the rate constant of the non-adiabatic heterogeneous electron transfer are consid-
ered and theways of the extensions of theMarcus approximation are studied. A number of the approximate for-
mulas suggested earlier for the rate constant are examined critically with the emphasis on that obtained by Y.
Zeng et al. [J. Electroanal. Chem. 735 (2014) 77–83]. We suggest the more accurate analytical formulas for the
rate constant which can have applications in the practical calculations because they also permit avoiding the cal-
culation of the improper integral over the Fermi distribution function. These approximate formulas are based on
the integration by parts of the improper integral in the explicit expression for the rate constantwithout the use of
any asymptotic matching and have ≤1% error for all reaction free energies and realistic reorganization energies.
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1. Introduction

Recently, interest was renewed in the evaluation of the rate constant
(RC) of the heterogeneous non-adiabatic electron transfer (ET) reaction
[1–3]. In the pioneeringwork ofMarcus [4] followed shortly by Hush [5]
a theoretical evaluation of the RC of the homogeneous ET reaction was
presented. This theory based on the transition state theory revealed
the central role played by the fluctuations of solvent polarization and
was extended later to the case of the heterogeneous ET reactions [6].
Only the adiabatic reactionswere considered in Refs. [4–6]. The electron
energy levels of an electrode also were not taken into account. Namely,
all the calculations were performed in the model where the potential
energy surfaces corresponding to the initial sate of the ET from an elec-
trode to an ion were replaced by one surface.

The first quantum-mechanical calculation of the RC of the homoge-
neous ET which permits to obtain the explicit expression for the pre-
exponential factor was presented in [7] within the perturbation theory.
The generalization of the method of Ref. [7] to the case of the non-
adiabatic heterogeneous ET was given in Refs. [8–9] where the full ET
was considered as a result of the independent ET from the one-
particle electronic levels of an electrode to an ion or vice versa. A
more consistent expression for the RC taking into account the electronic
density of states of an electrode and the Fermi distribution functionwas
reported by Levich and Dogonadze [10] and published later in [11]
(Eqs. (9)–(10) of [11]). The results obtained in [8–10] were reviewed
in detail by Marcus in Ref. [12]. If one assumes that the ET rakes place
mainly from the Fermi level of an electrode or vice versa, then the ex-
pression for the RC has the form first obtained in [8] and given by
Eqs. (11)–(12) of Ref. [12]. We refer traditionally to this approximation

as the Marcus one due to the appearance in the expression for the RC
the well-known Marcus exponential term (see Eqs. (2) and (9) of Ref.
[6]).

Heterogeneous ET can be studied analytically in two opposite cases:
the non-adiabatic and adiabatic ET reactions. In the case of the non-
adiabatic ET the effective electronic matrix element Δ is very small
(≪kBT, a weak coupling limit) so that the electron exchange between

an electrode and an ion is very slow. Here Δ ¼ π∑
p

jVpj2δðε−εpÞ is

the effective electronic matrix element where Vp are the electronic ma-
trix elements describing the coupling of the valence level of an ion with
the electronic states |pN of the electrode having the energies εp. There-
fore, a full relaxation of the solvent polarization to the final state where
an electron is situated at the valence level of an ion is established. As a
result, the total ET is the sum of the individual ET between two diabatic
terms corresponding to the initial electronic state |pN of an electrode
and the final state while the RC of each individual ET can be calculated
using the second order perturbation theory in Vp. In the opposite case,
the case of the adiabatic ET, the effective electronic matrix element is
rather large so that the electron exchange between an electron and an
ion is sufficiently fast in order to establish the electronic equilibrium
in the system at all fixed values of the effective coordinates describing
the fluctuations of the solvent polarization. As a result, in contrast to
the case of the non-adiabatic ET, the activation free energy of the adia-
batic ET reaction depends on the effective electronic matrix element.

Only the non-adiabatic ET is considered in the present paper so that
the perturbation theory can be employed. Using the second order per-
turbation theory in Vp and the wide-band approximation for the elec-
tronic structure of the electrode, the expression for the RC for the non-
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adiabatic single ET from an electrode to an ion with due account of the
Fermi distribution function can be written in the form [13]

k ¼ 2Δ
ℏ

kBT
πEr

� �1=2Z dε
2kBT

f εð Þ exp − Er−ΔF−εð Þ2=4ErkBT
h i

: ð1Þ

where energies ε and εp are counted from the Fermi level of an electrode
and the parameter Δ is independent of the energy ε in the wide-band
approximation. It was assumed that the harmonic approximation
takes place both for the fluctuations of the solvent polarization and in-
tramolecular vibrations. Only classical phonon modes were taken into
account and Er is the reorganization free energy of these modes. f(ε) is
the Fermi function andΔF is the reaction free energy of the ET and is de-
fined as the difference between the free energy F0 of the system in the
case when the valence level of an ion is empty and the free energy F1
corresponding to the case when one electron is removed from the
Fermi level of an electrode and is transferred to the valence level of an
ion. It is important that, for the non-adiabatic ET, the factor in front of
the integral in Eq. (1) comprises the product of the effective phonon fre-
quency and the transmission coefficient so that the RC given by Eq. (1)
depends only on the solvent reorganization energy. Since Eq. (1) can be
also used in the theory of the electron tunneling in the electrochemical
tunneling contacts [13–15], we introduce here just the reaction free en-
ergy ΔFwhich depends not only on the overvoltage but also on the bias
voltage [14]. By the same reason we consider only the case when
Er ≥ 0.1 eV ≈ 4kBT where kB is the Boltzmann constant and T is room
temperature since the typical values of the reorganization free energies
in the tunneling gap of the electrochemical bridged tunneling contacts
are larger than 0.1 eV [16]. Just the RC given by Eq. (1) is used in Refs.

[1–3,13–15]. We introduce the dimensionless value ~k ¼ k=½2Δ=ℏ�
where k is given by Eq. (1) and shall refer to it as the RC inwhat follows.

Due to the presence of the Fermi function the integral on the right
hand side (rhs) of Eq. (1) cannot be expressed in terms of elementary
functions. One may ignore this problem approximating the Fermi func-
tion by the step function (the Hale approximation (HA) [17]):

~kH ¼ 1
2
erfc

Er−ΔF

2 ErkBTð Þ1=2
" #

¼ 1−
1
2
erfc

ΔF−Er
2 ErkBTð Þ1=2

" #
: ð2Þ

However, this approximation is poor at small values of |ΔF | when
the ET takes place mainly from the electronic states of an electrode
which are close to the Fermi level (see Appendix A) and when the
form of the Fermi function is of importance. In particular, at Er ≫ |ΔF |,
kBT, the RC in the Marcus approximation (MA) has an additional factor
π/2 as compared with that in the HA (see below) so that the HA under-
estimates a value of the rate constant in this case [18]. Recently, the in-
tegral on the rhs of Eq. (1) was expressed as a series in the
complementary error functions [1–2,15]. However, in order to obtain
a concrete numerical value of the RC, the expansions presented in
[1–2,15] should be truncated at somemember of the series which is dif-
ferent for different values of the physical parameters specifying the
problem.

Although the numerical calculation of the RC is not a difficult prob-
lem and was performed long ago [18], it is of interest to obtain simple
analytical approximations for the RC that can be of importance for the
practical applications [3]. The simple analytical formula for the RC was
obtained in [3] (Eq. (17) of [3]) which is based on some mathematical
procedure. However, in contrast to the statement presented in [3], this
formula (the ZSBB approximation) which in our notations has the form

~kZSBB ¼ 1
2 1þ exp −ΔF=kBTð Þ½ � erfc

Er−kBT 1þ Er=kBTð Þ1=2 þ ΔF=kBTð Þ2
h i1=2

2 ErkBTð Þ1=2

8><
>:

9>=
>;

ð3Þ

is not the interpolation between the small and large |ΔF |/Er limits be-
cause of the error slipped on Appendix B of [3] (see below). It seems
also that the interpolation method of [3] has no clear physical grounds
in the specific regions of the parameter space.

At the same time, the consideration of the approximate expressions
for the RC can gain a new insight into the physics of the ET in the case of
the different values of the reaction free energy. In the present paper we
suggest a number of approximate expressions for the RC which are ap-
plicable in different regions of the parameter space and some of them
have ≤1% error for all reaction free energies and realistic reorganization
energies. The basic properties of the RC are considered in Section 2. The
comparison of the expressions for the RC in the HA and the ZSBB ap-
proximation with that in the MA (the large Er limit) is carried out in
Section 3. We also compare the exact RC and those obtained in [3,16].
Section 4 is devoted to the study of the possible extensions of the MA.
In Section 5 we suggest our approximate expressions for the RC. Con-
cluding remarks are presented in Section 6.

2. The basic characteristics of the exact RC

The exact RC (Eq. (1)) can be rewritten in the form [13,19]

~k ¼ kBT=πErð Þ1=2 exp − Er−ΔFð Þ2=4ErkBT
h i

I λ; μð Þ ð4Þ

where λ = Er/kBT, μ = ΔF/Er,

I λ; μð Þ ¼
Z∞
−∞

dx
1þ exp 2xð Þ exp x 1−μð Þ½ � exp −x2=λ

� � ð5Þ

and x = ε//2kBT. It can be readily shown that I(λ,λ) = 0.5(πλ)1/2 and
[19]

I λ; μð Þ ¼
Z∞
0

dx cosh μxð Þ
cosh xð Þ exp −x2=λ

� � ð6Þ

so that the function I(λ,μ) is an even function of μ. The function analo-
gous to I(λ,μ) was also considered in [1–2,15] where the exact expan-
sions of this function in series in the complimentary error functions
were presented. Since (see Eq. (11) of [1])

~k Er;−ΔFð Þ ¼ ~k Er;ΔFð Þ exp −ΔF=kBTð Þ; ð7Þ

it is sufficient to study only the positive ΔF. It can be easily shown ana-
lytically that the curve of the exact RC has the sigmoidal property (see
Ref. [17]) which also takes place in the HA and which we write in the
form:

~k Er;ΔFð Þ ¼ 1−~k Er;2Er−ΔFð Þ: ð8Þ

It follows obviously from this property that ~kðEr; ErÞ ¼ 1=2 (see also
Eq. (29) of [1]). Eq. (8) also shows that the RC for ΔF b Er when the ET
from an electrode to an ion has mainly activation character is smaller
than 1 by the RC for ΔFh = 2Er − ΔF N Er. It is obvious that the exact
RC in the activation region (ΔF b Er) increases with the increase of T.
However, as follows from Eq. (8), the exact RC decreases with the in-
crease of T in the region ΔF N Er. A physical meaning of this effect is con-
nected with the increase of the activation free energies of the main
individual ETs with the increase of T (see Appendix A).

On the other hand, in the region ΔF N Er the activation free energies
of the individual ETs which give the main contribution to the total RC
tend fast to zero with the increase of ΔF (see Appendix A) so that the
heterogeneous ET has mainly the activation-less character. At large
values of ΔF ≫ Er (or, approximately, when ΔF is larger than some
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