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Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and
pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are
often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal
genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict
clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog
putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized
clusters from six fungal species showed that SMURF accurately recovered all clusters and detected addi-
tional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and
variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs.
Further genetics studies are needed to experimentally confirm these clusters.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Secondary metabolites (SMs) are small bioactive molecules pro-
duced by many organisms including bacteria, plants and fungi.
These compounds are particularly abundant in soil-dwelling fila-
mentous fungi, which exist as multicellular communities compet-
ing with each other for nutrients, minerals and water (Keller et al.,
2005). Unlike primary metabolites, most SMs - as their name sug-
gests — are not essential for fungal growth, development, or repro-
duction under in vitro conditions. They can however provide
protection against various environmental stresses and during
antagonistic interactions with other soil inhabitants or a eukary-
otic host. Scientific appreciation of the importance of fungal SMs
grew in the 1940s as the massive impact of penicillin on human
health began to be seen. Since then, many other beneficial SM com-
pounds have been discovered including immunosuppressants, cho-
lesterol-lowering drugs, antiviral drugs, and anti-tumor drugs (for
a recent review see Hoffmeister and Keller, 2007). At the same
time, fungi are also known to produce numerous mycotoxins such
as aflatoxin, fumonisin, trichothecene, and zearalone.
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The first committed step in biosynthesis of an SM is catalyzed
by one of five proteins, which we refer to here as “backbone” en-
zymes. They include nonribosomal peptide synthases (NRPSs),
polyketide synthases (PKSs), hybrid NRPS-PKS enzymes, pren-
yltransferases (DMATSs), and terpene cyclases (TCs). These multi-
domain enzymes are associated, respectively, with production of
the five classes of SM: nonribosomal peptides, polyketides,
NRPS-PKS hybrids, indole alkaloids, and terpenes (Hoffmeister
and Keller, 2007). Terpenes, which are composed of isoprene units,
are not considered further in our analysis, because terpene cyclases
are highly variable in sequence and difficult to detect by bioinfor-
matic methods (Keller et al., 2005; Townsend, 1997). Intermediate
products formed by the backbone enzymes can undergo further
modifications catalyzed by “decorating” enzymes. The final prod-
uct is then often steered by a transporter outside the fungal cell
wall or sometimes remains within the cell. All these genes tend
to be found in contiguous gene clusters, which are coordinately
regulated by a specific Zn,Cysg transcription factor and/or by the
global regulator of secondary metabolism, putative methyltrans-
ferase LaeA (Keller and Hohn, 1997; Keller et al., 2005).

The availability of data from fungal genome sequencing projects
has facilitated the discovery and characterization of new com-
pounds and their biosynthetic pathways. Thus within months after
completion of the first A. fumigatus genome (Nierman et al., 2005),
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several secondary metabolite clusters were characterized at the
molecular level including the gliotoxin (Gardiner and Howlett,
2005), fumigaclavines (Coyle and Panaccione, 2005; Unsold and
Li, 2005; Unsold and Li, 2006), fumitremorgin (Maiya et al.,
2006), and siderophores (Reiber et al., 2005) biosynthesis clusters.
Genome sequencing also revealed that the number of secondary
metabolites characterized from a given species falls far behind
the numbers of clusters that can be predicted based on its genomic
sequence (Bok et al., 2006; Chiang et al., 2008). This has been
attributed to the fact that not all clusters may be expressed under
normal laboratory conditions.

Despite the medical and agricultural importance of fungal SMs,
most putative SM clusters in fungal genomes have been predicted
by ad hoc strategies based on manual reviews of BLAST searches
generated for backbone genes and their neighbors (e.g. Nierman
et al., 2005). Manual annotation of SM clusters, however, is time-
consuming and may result in inconsistent annotation.

To facilitate systematic mapping of SM clusters in fungal gen-
omes, we developed a web-based software tool, Secondary Metab-
olite Unknown Regions Finder (SMURF; www.jcvi.org/smurf/). It is
based on three hallmarks of fungal SM biosynthetic pathways: (i)
the presence of backbone genes, (ii) clustering, and (iii) character-
istic protein domain content. Subsequent analyses of the predicted
clusters present in 27 sequenced fungal genomes (Supplementary
Table 1) shows SM gene enrichment in the genus Aspergillus, the
absence of the clusters in unicellular fungi, and unexpected abun-
dance and variability of the fungal clusters. Our results are also
consistent with the view that SM profiles can be used as means
of differentiating species and strains in filamentous fungi (Frisvad
et al., 2008), and show that gene duplication plays an essential role
in the creation and expansion of the SM repertoires of fungi.

2. Methods
2.1. Identification of putative backbone enzymes

SMUREF relies on hidden Markov model (HMM) searches to de-
tect backbone genes in sequenced fungal genomes. The HMMER
program (http://hmmer.janelia.org) was used to search for con-
served Pfam and TIGRFAM domains of backbone enzymes in the
protein set of each sequenced species. Trusted threshold bit score
cutoffs (predefined in HMMER) were used for each HMM search.
NRPS enzymes were identified as enzymes with at least one mod-
ule composed of an amino acid adenylation domain (A), a thiola-
tion domain (PCP) and a condensation domain (C). PKS enzymes
were identified as enzymes with at least one acyl transferase do-
main (AT), a beta-ketoacyl synthase C-terminal domain (BKS-C),
and a beta-ketoacyl synthase N-terminal domain (BKS-N). Hybrid
PKS-NRPS enzymes were identified as enzymes with at least one
instance from each set of three domains listed above.

NRPS-like enzymes were identified with a combination of at
least two domains from any of those in the NRPS enzyme module;
or a combination of an A domain and a NAD_binding_4 domain; or
a combination of an A domain and short chain dehydrogenase do-
main. PKS-like enzymes were identified with a combination of at
least two domains from any of those in the PKS enzyme module.
To eliminate false positives among PKS-like enzymes, they were
defined as proteins with AT, BKS-C and BKS-N domains that scored
below a trusted HMM cut-off. In contrast, to eliminate false posi-
tives such as alpha-aminoadipate reductase among NRPSs, we re-
quired the score of the C-terminal domain of r-aminoadipate-
semialdehyde dehydrogenase alpha subunit to be above the cut-
off.

Prenyltransferase enzymes were identified as enzymes with at
least one DMATS-type prenyltransferase domain (DMATS). The

corresponding de novo HMM model for this domain (TIGR03429)
was created in this study from the seed alignment generated using
the A. fumigatus dimethylallyl tryptophan synthase FtmPT2 as a
seed sequence as previously described (Sonnhammer et al,
1998). Characterized or partially characterized seed members in-
clude several dimethylallyltryptophan synthases, a brevianamide
F prenyltransferase, the LtxC enzyme involved in lyngbyatoxin bio-
synthesis, and a probable dimethylallyl tyrosine synthase.

2.2. Identification of putative decorating enzymes

To define protein domains commonly present in SM decorating
enzymes, transporter, and transcriptional regulators; we examined
the domains detected in the 22 A. fumigatus clusters we used as a
training set. The list of clusters included two genetically character-
ized A. fumigatus clusters involved in biosynthesis of fumitremor-
gin (Grundmann et al., 2008; Kato et al., 2009; Maiya et al.,
2006) and melanin (Fujii et al., 2004; Tsai et al., 1999) and 10 clus-
ters predicted based on expression data: A. fumigatus clusters Pes1,
siderophore, fumigaclavine, pseurotin, the gliotoxin-like polyke-
tide (McDonagh et al., 2008; Perrin et al., 2007), and gliotoxin
(Gardiner and Howlett, 2005). The rest of the 22 clusters were pre-
dicted manually based on genes’ name and their proximity to the
adjacent backbone gene (Perrin et al., 2007). Some domains were
present almost exclusively in clusters, while others were evenly
distributed throughout the entire genome (Supplementary Table 2).
The final 27 SM-defining domains were selected as domains most
likely to be found in a cluster based on their distribution.

2.3. Identification of putative SM clusters

Once all putative backbone genes are identified in a genome,
the SMURF algorithm then evaluates their adjacent genes to test
whether they are part of an SM gene cluster (Supplementary
Fig. 1). A window of +20 genes on each side of a backbone gene
is scanned for the 27 SM-defining domains using HMMer. The
number 20 was established empirically based on the training set
of 22 A. fumigatus clusters. Genes in the window are tagged as
“SM domain positive” if they contain at least one of these domains,
or “SM domain negative” if they do not. Then the boundaries of any
putative cluster are defined by the algorithm that evaluates each
gene by walking rightwards from the backbone gene until it
reaches as a stop signal, which is defined below. The last gene on
the rightwards walk before the stop signal is given the label alpha.
After that SMURF carries out an identical walk leftwards from the
backbone gene, until a stop signal is encountered defining a left-
limit gene beta. The interval between alpha and beta is the preli-
minary extent of the cluster.

The algorithm requires two key parameters: d, the maximum
intergenic distance (in base pairs) permitted between two adjacent
genes in the same cluster; and y, the maximum number of SM do-
main negative genes, which is allowed within a cluster. By a trial-
and-error process, we identified the parameters d = 3814 bp and
y =10 genes as optimal based on the training set of 22 clusters. A
stop signal is defined as either an intergenic distance that is larger
than the limit d, or a cumulative number of negative genes be-
tween the backbone gene and the current position that is larger
than y (Supplementary Fig. 1).

To take into account the intergenic distances, the SMURF algo-
rithm trims each cluster to ensure that the interval between alpha
and beta is less than y. Then, additional genes are trimmed at both
ends of the cluster until the algorithm reaches the first backbone or
SM domain positive gene on each side. In some instances, SMURF
predicts overlapping clusters, in which case the two clusters are
merged into one.
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