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a b s t r a c t

A method for simulating electrode reactions in channel flow is developed and efficiently implemented in
the symbolic algebra program Maple™. The steady-state convective diffusion equation for fully devel-
oped 2-D laminar (Poiseuille) flow past one or more electrodes in a channel is considered for a charge-
transfer electrode reaction between two soluble species. The case where axial diffusion (along the chan-
nel, x direction) is neglected and the diffusivities are equal has an exact solution as an infinite series, in
which each term is the product of an exponential in x and a confluent hypergeometric function in y
(across the channel). The practical implementation consists of evaluating a finite number of terms and
numerically evaluating the two parameters in each term. Sturm–Liouville (eigenfunction) theory is used
to reliably find the parameters for arbitrary values of the rate constants. Comparison is made with results
from a commercial software package that uses a finite-element method.

� 2015 Published by Elsevier B.V.

0. Introduction

Electrochemical detection is well suited to microfluidic devices
[1,2], and the ready availability of new microfluidic fabrication
methods has led to renewed interest in channel electrodes [3],
with a consequent need for efficient computational methods. We
report here an eigenfunction series method for channel electrodes
that may be efficiently implemented by a symbolic algebra pro-
gram. The application of eigenfunction methods for the solution
of convective diffusion equations relevant to electrochemistry
has a long history. The solution to the Graetz problem, which
solves heat transfer to the walls of a tube with laminar flow, was
given as an eigenfunction expansion as early as 1883 [4], and an
extensive treatment of the electrochemical version was given by
Newman [5]. In the context of mass transport in the rectangular
channels that we consider here, Moldoveanu and Anderson solved
the limiting current case in terms of a series of parabolic cylinder
functions [6]. In these cases, the general case of arbitrary rate con-
stants was not attempted, perhaps because a reliable way of locat-
ing the eigenvalues was not available. Recently, Schmachtel and
Kontturi used eigenfunction methods to numerically solve
chronoamperometry currents at the rotating disk electrode [7].
They considered the case of arbitrary rate constants and also

showed that the case of quasireversible electrode reactions could
be solved as easily as the case of irreversible reactions.

Here we apply the eigenfunction expansion method to 2-D
steady-state flow past electrodes in a channel, for the case where
axial diffusion (along the channel) is neglected. We derive the
exact solution to this case as an infinite series. The practical imple-
mentation of this as a numerical method in the symbolic algebra
language Maple™ is presented and compared with the more con-
ventional finite-element (FE) method, as implemented in Comsol
Multiphysics�. It is a mesh-free method and so should give good
accuracy at the beginning of the electrode, where there is a step
change in boundary conditions and the current density is high.
Furthermore, the concentration profile, once determined, can be
easily manipulated term by term to find local current densities,
average current densities, or collection efficiencies, without signifi-
cant degradation in accuracy. The accuracy is determined by the
number of terms processed, and calculation of additional terms
allows the global error to be estimated. An important advantage
of the present method is that the whole region above an electrode
is solved at one time, so the complexity of the calculation is largely
independent of the channel height or width of the electrode.

1. Theory

We consider a solution of the steady-state diffusion–convection
problem in a 2-D channel with fully developed laminar (Poiseuille)
flow. Key notation is given in Fig. 1 and a full set of symbols are
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given in Supplementary Material, see Appendix B. The electrode
reaction between two solution species, Eq. (1), has the current den-
sity at a particular location at the electrode given by the usual rate
law, Eq. (2). The potential at the electrode is fixed, so the rate con-
stants (m s�1) do not vary over the electrode surface. However, we
allow the possibility of many electrodes along the wall of the chan-
nel, and the potential and rate constants may be different at each.
The convective diffusion equation to be solved for each species is
Eq. (3). We make the common assumption that the diffusivities
of the two species are equal.

R ¢
kf

kb

Pþ e� ð1Þ

jðxÞ ¼ FvðxÞ ¼ Fkf cRðx;0Þ � FkbcPðx;0Þ ð2Þ

0 ¼ D
@2ckðx; yÞ
@y2 � 4umax

h2 yðh� yÞ @ckðx; yÞ
@x

; k ¼ R; P ð3Þ

Matching of the fluxes at the electrode surface to the reaction
rate leads to the boundary conditions, Eq. (4), at the electrode sur-
face. (The convective flux at the walls is zero, so only the diffusive
part needs to be considered.) The flux at insulating sections
between electrodes and at the top of the channel is zero, Eqs. (5)
and (6). The ‘‘initial’’ condition is that the concentrations take the
bulk values at a location x0 upstream of the first electrode, Eq.
(7). In the absence of axial diffusion, the solution only propagates
downstream, and there is no loss in taking x0 ¼ 0. The measured
current density is given by averaging over the electrode surface,
Eq. (8).

D @cRðx; yÞ=@yð Þy¼0 ¼ �D @cPðx; yÞ=@yð Þy¼0 ¼ vðxÞ ð4Þ

@cRðx; yÞ=@yð Þy¼0 ¼ @cPðx; yÞ=@yð Þy¼0 ¼ 0 ð5Þ

@cRðx; yÞ=@yð Þy¼h ¼ @cPðx; yÞ=@yð Þy¼h ¼ 0 ð6Þ

ckðx0; yÞ ¼ cb
k ; k ¼ R; P ð7Þ

jave ¼ ðFD=wÞ
Z w

0
@cRðx; yÞ=@yð Þy¼0dx ð8Þ

As discussed below, the quasireversible solution including
the back reaction can be simply derived from the irreversible
solution with apparent rate constant k ¼ kf þ kb, so we need only
develop a numerical method for the irreversible case. We change
to dimensionless variables (see Fig. 1): Y ¼ y=h; X ¼ x=h;
W ¼ w=h, CðX;YÞ ¼ cRðx; yÞ=cb

R; K ¼ hkf=D; J ¼ h=cb
RDF

� �
j and

A ¼ 4umaxh=D ¼ 6Pe where Pe ¼ uaveh=D ¼ 2umaxh=3D is a Péclet
number for mass transfer. The convective diffusion equation and
boundary conditions are now:

0 ¼ @
2CðX;YÞ
@Y2 � AYð1� YÞ @CðX;YÞ

@X
ð9Þ

@CðX;YÞ=@Yð ÞY¼0 ¼ KCðX;0Þ ðat electrodeÞ ð10Þ

@CðX;YÞ=@Yð ÞY¼0 ¼ 0 ðbetween electrodesÞ ð11Þ

@CðX;YÞ=@Yð ÞY¼1 ¼ 0 ðtop of channelÞ ð12Þ

Cð0;YÞ ¼ 1 ðupstreamÞ ð13Þ

Writing CðX;YÞ ¼ FðXÞGðYÞ and rearranging gives Eq. (14),
which shows that the partial differential equation is separable.
The general solution, Eq. (15), is a superposition of products of

exponential functions of X and functions of Y that satisfy the dif-
ferential Eq. (16), where the primes indicates differentiation with
respect to Y.

1
Yð1� YÞGðYÞ

d2GðYÞ
dY2 ¼ A

FðXÞ
dFðXÞ

dX
¼ �b2 ð14Þ

CðX;YÞ ¼
X1
i¼1

ai expð�b2
i X=AÞGiðYÞ ð15Þ

�G00ðYÞ ¼ b2Yð1� YÞGðYÞ ð16Þ

Eq. (16) has an operator �d2
=dY2 operating on GðYÞ to give a con-

stant b2 times a weighting function Yð1� YÞ times GðYÞ.
According to Sturm–Liouville theory [8], such equations have an
infinite set of eigenfunction solutions, GiðYÞ, which depend on the
boundary conditions at the electrode and top channel surfaces.

The eigenvalues are the particular values b2
i that give valid solu-

tions. As detailed in Appendix A, we first narrow the solutions to
those that satisfy the zero-flux boundary condition at the top of
the channel, Eq. (17). This ensures that the concentration, Eq.
(15), satisfies the zero-flux condition, Eq. (12). These solutions
GðYÞ, normalized so that Gð1Þ ¼ 1, are given in terms of confluent
hypergeometric functions in Appendix A.

G0ð1Þ ¼ 0 ð17Þ

The remaining undetermined constant is b, which is determined
by the type of boundary condition at the Y ¼ 0 surface, i.e., the
electrode surface or an insulating surface between electrodes.
Three subcases are considered. The first is the limiting current
boundary condition, where the concentration is zero at the elec-
trode surface, Eq. (18). Solving Eq. (18) for b leads to the series of
values in Eq. (19).

Gð0Þ ¼ 0 ð18Þ

bð1Þ1 ¼ 3:82; bð1Þ2 ¼ 11:90; bð1Þ3 ¼ 19:92; . . . ð19Þ

bð1Þi �
pði� 1

2ÞR 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð1� YÞ

p
dY
¼ 8 i� 1=2ð Þ ð20Þ

8 i� 1ð Þ < bð1Þi < 8 i� 1=2ð Þ; i ¼ 1;2; . . . ð21Þ

where the superscript1 denotes an infinite rate constant (K ¼ 1).
Eq. (20) for the eigenvalues1 is from Sturm–Liouville theory [8], and

Fig. 1. Notation. Flow is from left to right, with one or more embedded electrodes
(bold) in the bottom of the channel. Lower case variables are dimensioned, upper
case variables are dimensionless. The dotted line is the velocity profile (extending
to infinite height) for the Lévêque approximation. The average velocity uave is 2/3 of
the maximum velocity umax.

1 We refer to the bi values as eigenvalues, though strictly these are the square roots
of the eigenvalues.
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