

Contents lists available at www.sciencedirect.com

Journal of Molecular Biology

journal homepage: http://ees.elsevier.com.jmb

Crystal Structure of Sol i 2: A Major Allergen from Fire Ant Venom

Aline S. Borer¹, Paul Wassmann¹, Margit Schmidt², Donald R. Hoffman³, Jing-Jiang Zhou⁴, Christine Wright⁵, Tilman Schirmer¹ and Zora Marković-Housley^{1*}

¹Department of Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland ²Department of Biology, East Carolina University, Greenville, NC 27858, USA

³Department of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA

⁴Department of Biological Chemistry, Rothamsted Research, Harpenden AL5 2JQ, UK

⁵Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0735, USA

Received 11 August 2011; received in revised form 5 October 2011; accepted 7 October 2011 Available online 12 November 2011

Edited by I. Wilson

Keywords:

major fire ant allergen; Sol i 2; crystal structure; hydrophobic cavity; odorant binding protein and pheromone binding protein LUSH Sol i 2 is a potent allergen from the venom of red imported fire ant, which contains allergens Sol i 1, Sol i 2, Sol i 3, and Sol i 4 that are known to be powerful triggers of anaphylaxis. Sol i 2 causes IgE antibody production in about one-third of individuals stung by fire ants. Baculovirus recombinant dimeric Sol i 2 was crystallized as a native and selenomethionyl-derivatized protein, and its structure has been determined by single-wavelength anomalous dispersion at 2.6 Å resolution. The overall fold of each subunit consists of five helices that enclose a central hydrophobic cavity. The structure is stabilized by three intramolecular disulfide bridges and one intermolecular disulfide bridge. The nearest structural homologue is the sequence-unrelated odorant binding protein and pheromone binding protein LUSH of the fruit fly Drosophila, which may suggest a similar biological function. To test this hypothesis, we measured the reversible binding of various pheromones, plant odorants, and other ligands to Sol i 2 by the changes in N-phenyl-1-naphthylamine fluorescence emission upon binding of ligands that compete with N-phenyl-1-naphthylamine. The highest binding affinity was observed for hydrophobic ligands such as aphid alarm pheromone (E)- β -farnesene, analogs of ant alarm pheromones, and plant volatiles decane, undecane, and β -caryophyllene. Conceivably, Sol i 2 may play a role in capturing and/or transporting small hydrophobic ligands such as pheromones, odors, fatty acids, or short-living hydrophobic primers. Molecular surface analysis, in combination with sequence alignment, can explain the serological cross-reactivity observed between some ant species.

© 2011 Elsevier Ltd. All rights reserved.

**Corresponding author.* E-mail address: zora.housley@unibas.ch.

Introduction

Fire ants of the genus *Solenopsis* have spread over large parts of the temperate and tropical world from their original habitats in South and Central America.¹ Today, fire ants are serious pests in the southern United States, Pacific Islands,² Southeast

Abbreviations used: SeMet, selenomethionine; PDB, Protein Data Bank; OBP, odorant binding protein; PBP, pheromone binding protein; cVA, 11-*cis*-vaccenyl acetate; NPN, *N*-phenyl-1-naphthylamine; CSP, chemosensory protein.

Asia,^{3,4} and Middle East.⁵ In the southeastern United States, the stings of imported fire ants are the most common cause of insect venom anaphylaxis.^{1,6,7} Fire ant venom consists of a mixture of very basic piperidine alkaloids⁸ and a small aqueous phase containing four major proteins.⁹ A single fire ant sting is sufficient to cause specific IgE antibody production, although it contains only 1–10 ng of protein.¹ In some endemic areas, 30–50% of the population shows evidence of sensitization to fire ant venom, as revealed by the presence of serum-specific IgE antibodies and by skin testing.⁶

Four allergenic proteins have been isolated from Solenopsis invicta venom and characterized.⁹ Sol i 1 is a phospholipase A¹B that is similar to those found in wasp venoms and belongs to the lipoprotein lipase family.¹⁰ It contains carbohydrates and exhibits some cross-reactivity with wasp venom proteins. Sol i 3 is a member of the antigen 5/pathogenesis-related protein family.^{11,12} It is not cross-reactive with wasp venom antigen 5, since there is almost no conservation of surface structure.¹³ Sol i 2 and Sol i 4 are members of a unique protein family.^{9,14,15} Sol i 2 is a covalent dimer composed of two identical monomers. Each monomer contains seven cysteines: six cysteines form three intramolecular disulfide bridges that stabilize the structure, whereas the seventh cysteine (Cys22) links two monomers by a disulfide bridge. Sol i 4 shares a 37% sequence identity with Sol i 2, lacks the dimerizing cysteine, and is present in venom as a monomer rather than as a disulfidelinked dimer. Proteins similar to Sol i 2 are found in venoms of other Solenopsis species, including Solenopsis richteri (Sol r 2), Solenopsis geminata (Sol g 2), and *Solenopsis saevissima* (Sol s 2).¹⁶ Sol i 2 has a high level of sequence identity with Sol r 2 (78.1%), as well as with Sols 2 and Solg 2 (71.4%). Although all of the Sol 2 allergens show a high degree of immunological cross-reactivity among the species tested, there are some species-specific determinants in the Sol 2 family of allergens.^{16,17} Mouse monoclonal antibodies that are species-specific have been produced, and human IgE cross-reactivity between *S. invicta* and *S. richteri* venoms is not complete.^{16,17} Sol i 2 proteins are less stable than Sol i 3 proteins, and their decomposition is responsible for the decay of allergen activity in vaccine extracts.¹⁸

Only a few three-dimensional structures of insect venom allergens are known to date: the X-ray structure of the major bee venom allergens phospholipase A2¹⁹ and melittin;²⁰ hyaluronidases from bee venom²¹ and wasp venom;²² antigen 5 from *Vespula vulgaris*²³ and red fire ant;¹³ and the complex between bee venom hyaluronidase and its specific IgG Fab.²⁴ To date, no unique structural feature responsible for the onset of allergenicity has been identified. In this work, the crystal structure of a major allergen from red fire ant (Sol i 2) is reported

and compared to its closest structural homologue, that is, the protein LUSH from *Drosophila*, which has specific alcohol and pheromone binding functions *in vivo*.^{25,26} The structures of Sol i 2 and LUSH have similar folds consisting of five and six α -helices that surround a central hydrophobic cavity. To verify whether the structural similarity to LUSH also implies functional similarity, we studied the binding of various insect pheromones, repellent, attractants, and plant volatiles to Sol i 2.

Results and Discussion

Structure determination

The crystal structure of the mature recombinant major allergen from fire ant venom, Sol i 2 (residues

Table 1. Data collection and refinement statistics

	Р	Ia	Ib
Data collection			
Protein	Native	SeMet	SeMet
Space group	$P2_{1}2_{1}2_{1}$	I222	I222
Number of monomers	8	2	2
per asymmetric unit			
Cell dimensions	110.2, 139.2,	62.8, 68.7,	57.5, 67.8,
a, b, c (Å)	62.1	111.7	100.9
Wavelength (Å)	1.0000	0.97930	1.48520
Number of unique	29,059	3638	3739
Resolution (Å)	70-2.58	58-3.30	56-3.10
	(2.72 - 2.58)	(3.48 - 3.30)	(3.27 - 3.10)
$R_{\rm sym}$ (%) ^a	5.5 (28.4)	6.4 (68.3)	5.6 (39.3)
Completeness (%)	95.0 (86.3)	90.7 (37.9)	94.4 (62.8)
Redundancy	3.2 (2.3)	16.6 (3.0)	7.0 (2.8)
$I/\sigma(I)$	17.3 (3.8)	24.5 (2.0)	15.6 (1.9)
Refinement statistics			
Resolution range (Å)	15.0-2.6		
Number of unique	26,886		
$P = \frac{b}{D} = \frac{c}{c} \left(\frac{a}{c} \right)$	227/271		
$\Lambda_{\rm work} / \Lambda_{\rm free}$ (70)	25.7/27.1		
Drotoin	6977		
Mator	70		
Hontono (HP6)	79		
PMSD from ideal value	50		
Bond longths $(Å)$	0.0097		
Bond angles (°)	1.00		
Average B-factors $(Å^2)$	1.00		
Protein	37.9		
Water	36.1		
Heptane	33.1		
Ramachandran plot (%)	0011		
Favored region	98.5		
Allowed region	1.5		
Disallowed region	0.0		

The highest-resolution shell is shown in parentheses.

^a $R_{\text{sym}} = \sum |I_i - \langle I_i \rangle| / \sum I_{ii}$ where I_i is the intensity of the *i*th observation and $\langle I_i \rangle$ is the mean intensity of the reflection.

^b $R_{\text{work}} = \sum (||F_0| - |F_c|| / \sum |F_0|).$

^c $R_{\text{free}} = R$ value for a randomly selected subset (5%) of the data that were not used in the refinement.

Download English Version:

https://daneshyari.com/en/article/2184842

Download Persian Version:

https://daneshyari.com/article/2184842

Daneshyari.com