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a b s t r a c t

Classifications and recent findings are reviewed for numerical simulations describing the impedance
response of rotating disk electrodes. The disk geometry is shown to cause a complex character to the
ohmic contribution to the impedance response. For reactions that do not involve formation of adsorbed
intermediates, the frequency dispersion associated with the disk geometry occurs above a characteristic
frequency. Such dispersion may be avoided by selecting a disk of sufficiently small dimension. For reac-
tions that do involve formation of adsorbed intermediates, a low-frequency dispersion is also seen. Mod-
els including the influence of mass transfer show that the coupling of faradaic and charging currents
induces frequency dispersion at frequencies associated with the faradaic reaction.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The disk electrode, consisting of a circular electrode embedded
in an insulating plane, is commonly used in electrochemical mea-
surements. The disk geometry may be associated with rotating or
stationary electrodes. Newman showed, in 1966, that electrode-
insulator interface gives rise to nonuniform current and potentials
distributions for currents below the mass-transfer limited current
[1,2]. The geometry-induced nonuniform current and potential dis-
tributions influences the transient response of the disk electrode.
Nisancioglu and Newman [3,4] developed a solution for the tran-
sient response of a faradaic reaction on a non-polarizable disk elec-
trode to step changes in current. The solution to Laplace’s equation
was performed using a transformation to rotational elliptic coordi-
nates and a series expansion in terms of Lengendre polynomials.
Antohi and Scherson have recently expanded the solution to the
transient problem by expanding the number of terms used in the
series expansion [5].

Newman also provided a treatment for the impedance response
of a disk electrode which showed that the capacity and ohmic
resistance were functions of frequency above a critical value of fre-
quency [6]. More recently, the present authors embarked on a
comprehensive numerical and experimental study of the imped-
ance response of the disk electrode, including the response of ide-
ally polarized electrodes [7], electrodes showing local CPE behavior
[8], electrodes with faradaic reactions [9], electrodes with reac-
tions involving adsorbed intermediates [10,11], and electrodes

subject to reactions influenced by mass transfer [12]. The authors
also explored the origin of the complex ohmic impedance [13,14]
and provided experimental verification of the phenomena pre-
dicted by the simulations [15,16]. The objective of this work is to
provide an overview of the impedance of a disk electrode.

2. Mathematical development

Deterministic impedance models for a disk electrode may be
divided into two categories. The models presented in Section 2.1
consider that mass transfer is unimportant. The potential and cur-
rent is either controlled by the ohmic resistance of the electrolyte,
i.e., a primary distribution, or a combination of ohmic resistance
and kinetic effects at the electrode, a secondary distribution. The
models presented in Section 2.2 pertain to systems where mass
transfer plays a significant role.

2.1. Influence of ohmic and kinetic phenomena

Under the assumption that mass-transfer may be neglected, the
electrical potential in the electrolyte is governed by Laplace’s
equation

r2U ¼ 0 ð1Þ

The system may be assumed to have cylindrical symmetry such that
the potential in solution is dependent only on the radial position r
along the electrode surface and the normal position y. In response
to an alternating current with a particular angular frequency
x ¼ 2pf , the potential can be separated into steady and time-
dependent parts as
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U ¼ Uþ RefeU exp jxtð Þg ð2Þ

where U is the steady-state solution for potential and eU is the com-
plex oscillating component which is a function of position only.
Similarly, the applied potential can be expressed as

V ¼ V þ RefeV exp jxtð Þg ð3Þ

Therefore, the form of Laplace’s equation to be solved, subject to
appropriate boundary conditions, is
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Eq. (4) can be solved using numerical methods.
The boundary condition for potential at r !1 is that eU ! 0,

and the boundary condition on the insulating surface is that
@ eU=@y ¼ 0. The distinction between different conditions simulated
is seen in the boundary condition for the electrode surface.

2.1.1. Blocking electrode
For a blocking electrode [7],

jKðeV � eU0Þ ¼ �r0
@ eU
@y

�����
y¼0

ð5Þ

where U0 is the potential in the solution adjacent to the electrode
and K is the dimensionless frequency

K ¼ xC0r0

j
ð6Þ

where C0 is the double layer capacitance and j is the electrolyte
conductivity. The current is only that required to charge or dis-
charge the electrode.

2.1.2. Blocking electrode with CPE behavior
For a blocking electrode with CPE behavior [8], the interfacial

impedance is given as

ZCPE ¼
eV � eUei ¼ 1

jxð Þa
Q ð7Þ

On application of the Euler identity,
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p
2

� �
þ j sin

p
2

� �
ð8Þ

Thus

KðeV � eU0Þ cos
ap
2

� �
þ j sin

ap
2

� �� �
¼ �r0

@ eU
@y

�����
y¼0

ð9Þ

where K is the dimensionless frequency defined for a system with
CPE behavior to be

K ¼ Qxar0

j
ð10Þ

The definition of the dimensionless frequency presented in Eq. (10)
differs from the definition expressed in Eq. (6).

2.1.3. Electrode with faradaic reactions
For an electrode with faradaic reaction [9], the boundary condi-

tion at the electrode is expressed in frequency domain as

jKðeV � eU0Þ þ JðeV � eU0Þ ¼ �r0
@ eU
@y

�����
y¼0

ð11Þ

where eV represents the imposed perturbation in electrode potential
referenced to an electrode at infinity and K is defined by Eq. (6)
under the assumption of pure capacitive behavior for the double

layer. Under the assumption of linear kinetics, valid for �ı� i0, the
parameter J is defined to be

J ¼ aa þ acð ÞFi0r0

RTj
ð12Þ

For Tafel kinetics, valid for �ı� i0, the parameter J is defined to be

JðV �U0Þ ¼
acF iðV �U0Þ
��� ���r0

RTj
ð13Þ

As U0 depends on radial position, the value of J expressed in Eq. (13)
is a function of radial position.

The charge-transfer resistance for linear kinetics can be
expressed in terms of parameters used in Eq. (12) as

Rt ¼
RT

i0Fðaa þ acÞ
ð14Þ

and, in terms of parameters used in Eq. (13),

Rt ¼
RT

iðV �U0Þ
��� ���acF

ð15Þ

For linear kinetics, Rt is independent of radial position, but, under
Tafel kinetics, as shown in Eq. (15), Rt depends on radial position.
From a mathematical perspective, the principal difference between
the linear and Tafel cases is that J and Rt are held constant for the
linear polarization; whereas, for the Tafel kinetics, J and Rt are func-
tions of radial position determined by solution of the nonlinear
steady-state problem.

Huang et al. [9] provide a relationship between the parameter J
and the charge-transfer and ohmic resistances as

J ¼ 4
p

Re

Rt
ð16Þ

Large values of J are seen when the ohmic resistance is much larger
than the charge-transfer resistance, and small values of J are seen
when the charge-transfer resistance dominates. The definition of
parameter J in Eq. (16) is the reciprocal of the Wagner number
[17], which is a dimensionless quantity that measures the unifor-
mity of the current distribution in an electrolytic cell.

2.1.4. Electrode with faradaic reactions coupled by adsorbed
intermediate

As the reaction sequences become more complicated, it
becomes difficult to express the model results in a general manner.
Wu et al. [10] analyzed the impedance response associated with
two successive charge-transfer steps involving an intermediate
species adsorbed on the electrode surface, i.e.,

M! Xþads þ e� ð17Þ

and

Xþads ! P2þ þ e� ð18Þ

The reactant could be a metal M which dissolves to form an
adsorbed intermediate Xþads, which then reacts to form the final
product P2þ. The reactions were assumed to be irreversible, and dif-
fusion processes were considered negligible. Similar mechanisms
were proposed by Epelboin and Keddam [18] for calculating the
impedance of iron dissolution through two steps involving an
adsorbed FeOH intermediate, and by Péter et al. [19] for the imped-
ance model of the dissolution of aluminum in three consecutive
steps with two adsorbed intermediates.

Under the assumption of Tafel kinetics, the steady-state current
densities for reactions (17) and (18) may be expressed by

iM ¼ KMð1� cÞ exp½bMðV �U0Þ� ð19Þ
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