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a b s t r a c t

An analytical formula for the impedance of a disk electrode for general local interfacial impedances has
been derived. The formula indicates that the current and potential distributions will affect the impedance
data when the measurement frequency is close to or higher than certain critical value. For capacitive or
Warburg-like local interfacial impedances, both relevant for porous and intercalation electrode films, the
criterion is the same as that previously obtained by Orazem, Tribollet and co-workers through numerical
simulation (Huang et al., 2007). Numerical simulation performed here for square and rectangular
electrodes show that the criterion will be similar to that for the disk but with the shorter edge length
of the electrode playing the role of the disk radius. The local impedances calculated for the square and
rectangular electrodes are qualitatively similar to those of the disk. However, for square or rectangular
electrodes the current-distribution effects lead to a different appearance in the various plots of the global
impedance (impedance-plane plots, Bode plots, etc.) than those for the disk. This is suggested to be due to
the ‘‘edge-like’’ and ‘‘center-like’’ local admittances receiving different weight when summed up to the
global impedance of the electrode.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Impedance analysis is indispensable in characterization of elec-
trochemical systems such as faradaic processes at metals [1],
capacitance measurements of semiconductor electrodes [2], inter-
calation in solid or agglomerate films at electrodes [3–8], and
rough and porous electrodes [9–12]. For example, electrochemical
impedance spectroscopy (EIS) can be used to obtain the potential-
capacitance relation which in turn can (ideally) be used to extract
the flatband potential of semiconductors, i.e. the potential at which
the energy bands become flat, by application of the Mott–Schottky
equation [2]. For films on electrode surfaces, such as porous inter-
calation electrodes used in batteries and battery materials [3,13]
and electrochromics [14–16], EIS appears particularly useful since
important parameters related to transport and kinetics may be
obtained from the data. Several books on EIS have appeared,
among them the recent ‘‘Electrochemical impedance spectroscopy’’
authored by Mark Orazem and Bernard Tribollet [17].

While a very powerful technique and more experimentally
accessible than ever, impedance analysis is frequently complicated
by ambiguities and non-idealities even in the absence of artifacts
associated with the collection of experimental data [18]. Fitting
of data to equivalent circuits may be useful for a simple assessment
of the data in terms of the number of time constants and consis-
tency with Kramers–Kronig relations [19], whereas mathematical
models such as those presented in Refs. [3–5,7,8] are desirable
for extraction of parameters such as diffusion coefficients and rate
constants. However, such mathematical models are usually highly
idealized, and deviations from these idealizations may have to be
corrected for in the analysis of the data. Vice versa, a model can
be employed to guide the experimental work so that such artifacts
are avoided in the first place.

Following the seminal work of Newman [20], Orazem, Tribollet
and co-workers highlighted in a series of papers the effects of
lateral current and potential distributions on the impedance data
for disk electrodes [21–23]. For disk electrodes at which the local
interfacial impedance at the electrode–solution interface is purely
capacitive the global impedance shows deviations from capacitive
behavior at high frequencies, and the response is best described
through an apparent constant-phase element (CPE) in this
frequency range [21]. The CPE, which has an impedance
ZCPE ¼ 1=Q 0 jxð Þa, was implicitly described by Fricke already in
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1932 [24] and later by Cole and Cole [25], but remains elusive. In
addition to the effects of lateral current distribution referred to
above, observations of impedances with a – 1 has been discussed
in terms of a number of phenomena, such as non-homogeneous
surfaces [26], electrode roughness [27–31], adsorption [32], local
conductivity variations [33,34], and anomalous diffusion [35],
among other things. (Note that a true CPE has a frequency indepen-
dent a, while the term apparent CPE is used when a is a function of
frequency [21].)

The possibility of frequency dispersion at high frequencies for
electrodes covered with films due to the effects of current distribu-
tion was taken into consideration in Glarum and Marshall’s paper
[16]. Noting that even for a small capacitive surface ‘‘the [electro-
lyte] resistance leads to a nonuniform current distribution which is
manifest in complex plane plots at kilohertz frequencies’’ they
employed a very small electrode of an area of just 0.002 cm2. Gla-
rum and Marshall [16] did not attempt to specify the frequency
range for which such effects would become significant, though.

Current distribution in porous electrodes [9,10] in the direction
normal to the electrode may also result in non-integer values for a,
and purely capacitive porous electrode may be represented by a
CPE with a ¼ 1=2. The same type of impedance has been obtained
for more complex processes in porous electrodes in the high-
frequency limit [6,8,35], and also ion-insertion electrodes will dis-
play this type of impedance at high frequencies [7]. For composite

electrodes frequency dispersion due to the current distribution
effects may even give rise to separate arcs in impedance plane
plots [36]. The combined effects of current distribution in the
direction normal to the electrode surface in porous and ion-
insertion films and lateral current and potential distributions
appear to have received little attention in the context of imped-
ance, however.

The object of this work is to investigate the effect of secondary
current distribution on the total impedance measured at disk and
plate electrodes and to include in the analysis porous electrodes
and electrodes covered with electroactive films. We follow the def-
initions of Ref. [37, pp. 378–396] and refer to the primary current
distribution as the current distribution calculated with no surface
overpotential (negligible local interfacial impedance) at the
electrode and the secondary current distribution as the current dis-
tribution when finite surface overpotentials (finite local interfacial
impedance) are included. First we derive general impedance mod-
els for a disk and a square plate in an insulating plane. Simulations
for local interfacial admittances of capacitive or Warburg type3 are
then presented. We will show that both a plate and a disk are
influenced above a certain frequency and that the different electrode

Nomenclature

List of symbols
a disk radius, cm
B coefficients of the series solution, Eq. (12)
B vector of coefficients B of the series solution, Eq. (25)
B0 dimensionless current, Eq. (17), Eq. (50)
b0 dimensionless current density, Eq. (37) or Eq. (47)
c0 local interfacial capacitance in pore, F cm, Eq. (54)
c concentration, Eq. (53)
D diffusion coefficient, cm2 s�1, Eq. (53)
E electrode potential, Eq. (53)
F Faraday number, 96,485 C mol�1

I total current, A
I integral, Eq. (19)
I vector of integral, Eq. (26)
i current density, A cm�2

J polarization parameter, Fig. A.2
L conductance, S
Lx; Ly; Lz lateral electrode dimensions, m
‘ film thickness, m
M2n Legendre function of imaginary argument, Eq. (14)
P2n Legendre polynomial of degree 2n
P vector of Legendre polynomials
Q integral, Eq. (24)
Q0 CPE constant
Q matrix of integrals Qnk, Eq. (20)
R gas constant, J mol�1 K�1

rp resistance in pore, X cm�1, Eq. (54)
r radial coordinate, cm
s Laplace-variable
T temperature, K
V electrode potential, V
w0 Warburg admittance factor, S cm�2

x; y; z Cartesian coordinates, cm
Y global admittance, S cm�2 or S
y local admittance, S cm�2

y0 local interfacial admittance, S cm�2

Z global impedance, X cm2 or X

z local impedance, X cm2

z0 local interfacial impedance, X cm2

z charge number

Greek
a CPE exponent
Z dimensionless global impedance, 1=�
f dimensionless local impedance
j electrolyte conductivity, S cm�1

n;g; f dimensionless coordinates, Eqs. (4) and (5) or Eqs. (43)
� dimensionless global admittance
t dimensionless local admittance
t0 dimensionless local interfacial admittance
U solution potential, V
/ dimensionless solution potential, zF=RTð ÞU
v dimensionless electrode potential, zF=RTð ÞV
x angular frequency, Hz, s�1

X dimensionless angular frequency

Subscripts
i x, y, or z, Eq. (44)
n; k index of coefficients B of the series solution, Eq. (12)
maxY 00 maximum in plots of the logarithm of the admittance

vs. X
X ohmic

Superscripts
0 real part
00 imaginary part

Overline
� time-dependent part of quantity

Others
Lfg Laplace-transform

3 We use the term Warburg impedance here referring to its mathematical form, i.e.
as an impedance proportional to the square root of jx, which does not necessarily
imply that diffusion in the solution phase is involved.
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