Contents lists available at www.sciencedirect.com # Journal of Molecular Biology journal homepage: http://ees.elsevier.com.jmb # Crystal Structure of the Cyanobacterial Signal Transduction Protein P_{II} in Complex with PipX Meng-Xi Zhao¹†, Yong-Liang Jiang¹†, Bo-Ying Xu¹, Yuxing Chen¹, Cheng-Cai Zhang² and Cong-Zhao Zhou¹* ¹Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China ²Aix-Marseille Université and Laboratoire de Chimie Bactérienne, Unités Propres de Recherche 9043, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France Received 25 June 2010; received in revised form 1 August 2010; accepted 4 August 2010 Available online 12 August 2010 Edited by K. Morikawa Keywords: cyanobacteria; signal transducers; PII; PipX; 2-oxoglutarate P_{II} proteins are highly conserved signal transducers in bacteria, archaea, and plants. They have a large flexible loop (T-loop) that adopts different conformations after covalent modification or binding to different effectors to regulate the functions of diverse protein partners. The P_{II} partner PipX $(P_{II} \text{ interaction } p \text{rotein } X)$, first identified from Synechococcus sp. PCC 7942, exists uniquely in cyanobacteria. PipX also interacts with the cyanobacterial global nitrogen regulator NtcA. The mutually exclusive binding of P_{II} and NtcA by PipX in a 2-oxoglutarate (2-OG)-dependent manner enables P_{II} to indirectly regulate the transcriptional activity of NtcA. However, the structural basis for these exclusive interactions remains unknown. We solved the crystal structure of the P_{II}-PipX complex from the filamentous cyanobacterium *Anabaena* sp. PCC 7120 at 1.90 Å resolution. A homotrimeric P_{II} captures three subunits of PipX through the T-loops. Similar to P_{II} from *Synechococcus*, the core structure consists of an antiparallel β -sheet with four β -strands and two α -helices at the lateral surface. PipX adopts a novel structure composed of five twisted antiparallel β -strands and two α -helices, which is reminiscent of the P_{II} structure. The T-loop of each P_{II} subunit extends from the core structure as an antenna that is stabilized at the cleft between two PipX monomers via hydrogen bonds. In addition, the interfaces between the β-sheets of PipX and P_{II} core structures partially contribute to complex formation. Comparative structural analysis indicated that PipX and 2-OG share a common binding site that overlaps with the 14 signature residues of cyanobacterial P_{II} proteins. Our structure of PipX and the recently solved NtcA structure enabled us to propose a putative model for the NtcA-PipX complex. Taken together, these findings provide structural insights into how P_{II} regulates the transcriptional activity of NtcA via PipX upon accumulation of the metabolite 2-OG. © 2010 Elsevier Ltd. All rights reserved. #### Introduction P_{II} signaling proteins are highly conserved in bacteria, archaea, and plants. Genes coding for P_{II} proteins are divided into three subfamilies: *glnB*, *glnK*, and *nifI*.¹ GlnB and GlnK function as homotrimers to modulate nitrogen assimilation. Heterotrimeric NifI is distinct from the members of the ^{*}Corresponding author. E-mail address: zcz@ustc.edu.cn. † M.-X.Z. and Y.-L.J. contributed equally to this work. Abbreviations used: 2-OG, 2-oxoglutarate; NAGK, N-acetyl glutamate kinase; PDB, Protein Data Bank. other two subfamilies and is found only in nitrogenfixing archaea and some anaerobic bacteria.² P_{II} proteins sense carbon-related, nitrogen-related, and energy-related signals, and interact with diverse target proteins, most of which are involved in the regulation of nitrogen metabolism. A series of structures of P_{II} proteins from bacteria, $^{3-7}$ archaea, 8 and plants⁹ have been solved. All exist as trimers, with each subunit sharing a highly similar core structure of an antiparallel β -sheet and two α -helices at the lateral surface. The three subunits form a short cylinder, with the functional large flexible loop (T-loop) of each subunit protruding towards the solvent as an antenna to interact with the partner proteins. Most P_{II} proteins sense signals in two modes: through effector-triggered conformational changes and through covalent modifications. 10 Both modes are primarily dependent on the variable T-loop. The binding pattern of the effectors ATP/ADP and 2-oxoglutarate (2-OG) is universal and conserved among $P_{\rm II}$ proteins. $^{1,11-13}$ These effectors enable the T-loop to adopt different conformations for interacting with diverse P_{II} partners. 10 ATP is stabilized at the intersubunit cleft of P_{II} , 14 and its binding is synergistic with the association of 2-OG.¹⁵ In contrast, the covalent modification patterns are less conserved. Residue Ser49 of P_{II} from the unicellular cyanobacterium Synechococcus elongatus PCC 7942 (referred to as Synechococcus) or Synechocystis PCC 6803 (referred to as *Synechocystis*) is phosphorylated under poor nitrogen conditions, 11 while Tyr51 is nitrificated in the heterocystous cyanobacterium Anabaena sp. PCC 7120 (referred to as Anabaena). 16 In Escherichia coli, PII is regulated by uridylylation at the conserved Tyr51 residue of the T-loop. 11 To date, only GlnB-type $P_{\rm II}$ has been found in all sequenced cyanobacteria. Because of the absence of 2-OG dehydrogenase in cyanobacteria, the 2-OG produced by the Krebs cycle serves mainly as a carbon skeleton for nitrogen assimilation through the glutamine synthetase–glutamate synthase pathway. The direct link of 2-OG level to nitrogen assimilation makes the metabolite 2-OG an important signal of the carbon/nitrogen balance in cyanobacteria, and this signal is sensed by $P_{\rm II}$ protein. Three P_{II} partner proteins have been reported in cyanobacteria: *N*-acetyl glutamate kinase (NAGK)²⁰ and PipX (*P*_{II} interaction protein X) in Synechococcus,^{20,21} and the membrane protein PamA of unknown function in Synechocystis.²² Of these, only the molecular mechanism of NAGK regulation by P_{II} has been clearly illustrated from the structural point of view.²³ After being first identified in Synechococcus,^{20,21} PipX has been found exclusively in all cyanobacteria. It specifically interacts only with cyanobacterial P_{II}, and not with E. coli GlnB or GlnK, or with Arabidopsis thaliana P_{II}.²¹ PipX also interacts with the global nitrogen regulator NtcA,²¹ which belongs to the Crp/Fnr transcription factor family and regulates a group of cyanobacterial nitrogen assimilation genes. PipX switches between binding $P_{\rm II}$ and binding NtcA, depending on the cellular 2-OG concentration. At lower 2-OG concentrations, PipX is bound to $P_{\rm II}$. Upon 2-OG accumulation, PipX binds to NtcA. OG impairs the interaction between $P_{\rm II}$ and PipX in the presence of ATP, but facilitates the formation of the NtcA-PipX complex. The three proteins $P_{\rm II}$, PipX, and NtcA are highly conserved in all sequenced cyanobacterial genomes, and NtcA and PipX are exclusively encoded by cyanobacteria, indicating that the 2-OG-dependent swapping of PipX might be a universal mechanism of cyanobacteria. Here, we present the structure of the P_{II} –PipX complex from *Anabaena*. After the structures of the P_{II} –NAGK complex 23,25 and the AmtB–GlnK 26 complex, our structure represents the third complex of P_{II} with its partner. P_{II} assembles into a trimer as reported and interacts with PipX through the T-loops. The homotrimer of P_{II} resembles an upside-down tripod that holds three PipX molecules, which have only slight interactions with each other. Through comparative structural analysis, we deduced how 2-OG and ATP/ADP affect the interaction between P_{II} and PipX. Further structural simulation provides insight into the swapping of PipX from P_{II} to NtcA. ### Results #### Overall structure of the P_{II}-PipX complex The structure of the P_{II}-PipX complex was solved and refined to 1.90 A resolution. It belongs to space group P321, with unit cell dimensions of a = 70.65 Å, b=70.65 Å, c=88.54 Å, $\alpha=90.00^{\circ}$, $\beta=90.00^{\circ}$, and $\gamma = 120.00^{\circ}$. The asymmetric unit contains one molecule each of P_{II} and PipX, which form a 3-fold symmetric complex with a stoichiometry of 3 P_{II}:3 PipX (Fig. 1a and b). The overall structure of the complex resembles a triangular prism that is 43 Å in height and 64 Å (for the PipX layer) or 40 Å (for the P_{II} layer) in width. Each P_{II} subunit inserts its wellordered T-loop (Phe36-Leu56) into the lateral cleft of two adjacent PipX molecules, stabilizing the complex via extensive contacts. Three subunits of PipX form a positively charged hole at the center of the P_{II} trimer (Fig. 1c). #### Structural comparison of P_{II} Anabaena P_{II} adopts a ferredoxin-like fold (Fig. 2a), as defined by the Structural Classification of Proteins‡. The overall structure is very similar to the ## Download English Version: # https://daneshyari.com/en/article/2185549 Download Persian Version: https://daneshyari.com/article/2185549 <u>Daneshyari.com</u>