

Contents lists available at www.sciencedirect.com

Journal of Molecular Biology

On the Existence of a Possible A_{2A} – D_2 – β -Arrestin2 Complex: A_{2A} Agonist Modulation of D_2 Agonist-Induced β -Arrestin2 Recruitment

Dasiel O. Borroto-Escuela¹, Wilber Romero-Fernandez¹, Alexander O. Tarakanov², Francisco Ciruela³, Luigi F. Agnati⁴ and Kjell Fuxe¹*

¹Department of Neuroscience, Karolinska Institutet. Retzius väg 8, 17177 Stockholm, Sweden ²St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, 193167 Saint Petersburg, Russia ³Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, 08907 Barcelona, Spain ⁴IRCCS, 41100 Lido Venice, Italy

Received 25 November 2010; received in revised form 7 January 2011; accepted 11 January 2011 Available online 20 January 2011

Edited by J. Karn

Keywords: heteromerization; G-protein-coupled receptors; allosteric modulation; internalization; receptor–protein interaction

Given that coactivation of adenosine A_{2A} ($A_{2A}R$) and dopamine D_2 (D_2R) receptors results in the coaggregation, cointernalization, and codesensitization of the $A_{2A}R$ and D_2R and the role of scaffolding protein β -arrestin2 in the desensitization, internalization, and signaling of G-protein-coupled receptors, in this study we explored the ability of the A2AR agonist CGS21680 in A_{2A}R–D₂R-coexpressing cells to modulate the D₂R agonistinduced recruitment of β -arrestin2 to the D₂R by means of proximity-based bioluminescence resonance energy transfer (BRET²) and co-trafficking analysis. We found evidence that CGS21680 can increase the maximal BRET² signal between β -arrestin2^{RLuc} and D_{2L}R^{GFP2} upon D₂R activation, by increasing the potency of the D₂R agonist to exert this action. In addition, this change was associated with an increased formation of cytoplasmic clusters containing β -arrestin2^{GFP2} and D_{2L}R^{YFP} as seen from the co-trafficking analysis. Furthermore, the A_{2A}R agonist advanced the time for the increase in Åkt phosphorylation obtained with the D₂R agonist. Finally, using a novel bioinformatics approach to predict the protein-protein interface, we have also found that amino acid pro-triplets TNY, LLS, RAF, and VSR may be crucial for the -induced β-arrestin2 recruitment by A_{2A}R-D₂R heteromers. Taken together, the results indicate that the antagonistic A_{2A}R–D₂R allosteric receptor–receptor interaction in A_{2A}R–D₂R heteromers favors β -arrestin2 recruitment to the D_{2L}R protomer with subsequent cointernalization associated with a reduced time onset of Akt phosphorylation followed by a rapid dephosphorylation. Thus, β -arrestin2 action becomes more rapid and short-lasting and, in this way, mimics G-proteinmediated signaling.

© 2011 Elsevier Ltd. All rights reserved.

*Corresponding author. E-mail address: kjell.fuxe@ki.se.

Abbreviations used: $A_{2A}R$, adenosine A_{2A} receptor; D_2R , dopamine D_2 receptor; BRET, bioluminescence resonance energy transfer; PBS, phosphate-buffered saline.

Introduction

Adenosine A_{2A} receptor ($A_{2A}R$)–dopamine D_2 receptor (D_2R) heteromerization has been demonstrated by means of biochemical and biophysical methods [co-immunoprecipitation, bioluminescence resonance energy transfer (BRET), and fluorescence resonance energy transfer analyses] to occur upon transient cotransfection of the two receptors in cell lines including HEK293 T cells.^{1–3} Antagonistic allosteric $A_{2A}R$ – D_2R receptor–receptor interactions have been shown to exist in $A_{2A}R$ – D_2R heteromers, reducing the affinity of the D_2R agonist binding sites, Gi/o coupling, and signaling via adenylate cyclase, phospholipase C, and mitogen-activated protein kinases.^{2,4–6}

In D₂R-cotransfected neuroblastoma cells, coactivation of A_{2A}R and D₂R results in the coaggregation, cointernalization, and codesensitization of the A_{2A}R and D₂R.⁷ However, it is unknown how the scaffolding protein β-arrestin2, being recognized to participate in the desensitization, internalization, and signaling of G-protein-coupled receptors, is involved in these events.⁸ The sequence amino acid 212-IYIV-215 in the N-terminal part of the third intracellular loop (IC-3) of the D₂R appears critical for β-arrestin2 binding.^{9,10} Furthermore, Lys149 in the second intracellular loop (IC-2) in the D₂R gives preferential β-arrestin2 binding to D₂R IC-2 *versus* D₃R IC-2, as shown in studies with glutathione *S*-transferase fusion proteins of D₂R and D₃R IC-2.¹⁰ β-Arrestin2 is also involved in mediating the Akt/GSK3 signaling of D₂Rs.^{11,12}

In this study, we explored the ability of the A_{2A}R agonist CGS21680 in A_{2A}R-D₂R-cotransfected cells to modulate the D2R-like agonistinduced recruitment of β -arrestin2 to the D_2R by means of $BRET^2$ and co-trafficking analyses. In parallel, the $A_{2A}R$ agonist modulation of the D_2R induced changes in the temporal dynamics of protein kinase B (Akt) phosphorylation was studied to link changes in signaling to the BRET² and co-trafficking analyses. Therefore, according to the experimental results and using a novel bioinformatics approach to predict the proteinprotein interface, the amino acid pro-triplets TNY, LLS, RAF, and VSR may be crucial for the agonistinduced β -arrestin2 recruitment by A_{2A}R–D₂R heteromers.

Results

D₂R agonist-mediated internalization is increased upon combined A_{2A}R and D₂R agonist treatment

 $A_{2A}R$ - D_2R heteromers are known to be formed after transient coexpression of the two receptors in

HEK cells,^{2,3} resulting in co-trafficking of the D_2R and $A_{2A}R$.¹³ We investigated whether $A_{2A}R$ affects the D_2R agonist-mediated D_2R internalization in transiently cotransfected HEK293T cells using a cell surface receptor expression assay.

HEK293T cells coexpressing 3xHA-D_{2L}R and A_{2A}R were incubated in the presence of the $D_{2L}R$ agonist quinpirole (0.25 μ M) with or without the A_{2A}R agonist CGS21680 (1 µM) at 37 °C for 30 min to monitor internalization (Fig. 1a). Notably, quinpirole induced a rapid internalization of 3xHA-D_{2L}R, resulting in a cell surface expression of approximately 56% of control. However, combined treatment with CGS21680 $(1 \mu M)$ and quinpirole $(0.25 \mu M)$ further enhanced $3xHA-D_{2L}R$ internalization, reducing the level of cell surface expression to 28%. Such an increased internalization of 3xHA-D_{2L}R was abolished by specific A_{2A}R and D₂R antagonist treatment (data not shown), suggesting that this effect is mediated through the coactivation of D_{2L}R and A_{2A}R. As also seen in Fig. 1a, cotransfected cells preincubated with 0.45 M sucrose for 30 min prior to agonist treatment resulted in a marked reduction of 3xHA-D_{2L}R internalization after combined treatment as well as D2R agonist treatment alone. This supports the involvement of clathrincoated pits in the 3xHA-D_{2L}R internalization process.

Internalization may target the D₂R and D₂R- $A_{2A}R$ heteromers to either a degradative pathway, leading to prolonged attenuation of cell signaling, or to a cell surface recycling pathway, facilitating receptor resensitization. We therefore evaluated the time course of 3xHA-D_{2L}R recycling to the plasma membrane. Cells were treated with quinpirole (0.25 μ M) alone or together with CGS21680 $(1 \mu M)$ during a time course of 0 to 45 min to promote 3xHA-D_{2L}R internalization. The agonists were then removed by extensive washing with phosphate-buffered saline (PBS), and the reappearance of the 3xHA-D_{2L}R at the cell surface was monitored over time (from 45 min to 120 min) by checking its expression level in the surface membrane. As shown in Fig. 1b, exposure of transiently cotransfected cells to quinpirole (0.25 µM) for 45 min reduced 3xHA-D_{2I}R cell surface expression by approximately 52%. Thirty minutes after agonist removal, a highly significant proportion of 3xHA- $D_{2L}R$ returned to the plasma membrane (90%). In addition, Fig. 1b shows that combined A2AR and D_2R stimulation of the cells resulted in a significant further reduction by 23% of the cell surface expression of 3xHA-D₂₁R after 45 min of incubation compared to the cell surface expression following quinpirole treatment alone. Furthermore, the time course and rate of return of internalized $3xHA-D_{2L}R$ (i.e., resensitization) to the plasma membrane after agonist removal were significantly Download English Version:

https://daneshyari.com/en/article/2185689

Download Persian Version:

https://daneshyari.com/article/2185689

Daneshyari.com