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a b s t r a c t

TiO2 nanofibers were prepared by improved electrospinning technique and subsequent thermal treat-
ment. The as-prepared TiO2 nanofibers possess anatase-rutile mischcrystal structure. Sulfur was mixed
with the TiO2 nanofibers to form S–TiO2 composite by a melt diffusion process. The S–TiO2 composite dis-
plays more excellent discharge capacity retention of 58% after 50 cycles compared to pure S, and the dis-
charge capacity is 530 mAh g�1 after 50 cycles, which is ascribed to the adsorption of lithium polysulfide
by TiO2.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, high-specific-energy rechargeable lithium-ion batter-
ies (LIBs) and sodium-ion batteries have attracted ever-increasing
attention due to the increasing energy demands and environmen-
tal crisis [1–3]. However, the current insertion oxide cathodes such
as LiCoO2 and LiMn2O4 with low capacity (<300 mAh g�1) have
limited the performance of LIBs, which forces material researchers
to develop alternative high-capacity cathodes [4–6]. In the new
cathode materials, sulfur is very attractive for LIBs due to its high
theoretical specific capacity of 1675 mAh g�1, which is about five
times higher than the current insertion oxide cathodes. In addition,
sulfur is abundant, low-cost, non-toxic and environmental friendly
[7–13]. Therefore, lithium/sulfur batteries have the potential to
replace current LIBs in the near future [11,12].

However, there are many challenges remained for lithium/sul-
fur batteries before the commercialized application, that is as fol-
lows: (i) electric insulating of sulfur and the insoluble low-order
lithium polysulfide; (ii) high dissolution of intermediate polysul-
fides, creating an internal ‘‘shuttle’’ phenomenon which causes
an irreversible loss of sulfur and low coulombic efficiency; and
(iii) large volumetric expansion of sulfur (80%) during the dis-
charge/charge process [14–18]. To solve the above problems,
extensive attempts have been made, including the use of various
carbon [19–22] or conductive polymer substrates [23–27], the
optimization of organic electrolyte [28–32] and the utilization of
porous oxide additives [33–35]. Zheng et al. [32] utilized ionic

liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsul-
fonyl)imide to modify the properties of the SEI layer formed on
the Li metal surface in Li–S batteries. It was found that the IL-
enhanced passivation film on the lithium anode surface exhibited
very different morphology and chemical composition, effectively
protecting lithium metal from continuous attack by soluble poly-
sulfides. Recently, TiO2 as an additive or a substrate [14,16,36–
39] for lithium/sulfur batteries has received much attention
because its strong chemical adsorption of lithium polysulfide,
which can significantly improve the cycle performance of lith-
ium/sulfur batteries. Seh et al. [14] fabricated sulfur-TiO2 (amor-
phous) yolk-shell nanoarchitecture with an internal void space,
which displayed a long cycling capability (over 1000 charge/dis-
charge cycles) with a small decay rate of 0.033% per cycle. Li
et al. [39] designed a sulfur-impregnated mesoporous hollow
TiO2 (anatase) sphere cathode with intriguing capacity retention
(71%) and high coulombic efficiency (93%) over 100 cycles at 1 C
rate. To our knowledge, there is no paper related to TiO2 with ana-
tase-rutile mischcrystal structure as the improved matrix for lith-
ium/sulfur batteries.

In this paper, TiO2 nanofibers were prepared by improved elec-
trospinning technique and subsequent thermal treatment. Elec-
trospinning can offer a simple and versatile route to the large-
scale production of fibers from a variety of materials [40]. Sulfur
was mixed with the TiO2 nanofibers to form S–TiO2 composite by
a melt diffusion process. The structural and morphological perfor-
mance of the S–TiO2 composite was investigated by X-ray diffrac-
tion, transmission electron microscopy, scanning electron
microcopy and field emission scanning electron microscopy, and
the electrochemical properties were analyzed by cyclic voltammo-
grams and galvanostatic discharge/charge tests.
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2. Experimental

2.1. Materials synthesis

TiO2 nanofibers were prepared by improved electrospinning
technique and subsequent thermal treatment as described by the
previous reports [40,41]. In a typical synthesis, 0.35 g poly (vinyl
pyrrolidone) was added to a mixture of 6.5 mL ethanol, 2 mL acetic
acid and 1.5 mL tetrabutyl titanate, and then stirred for 10 h at
room temperature in order to obtain a homogeneous precursor
solution. The solution was driven from the syringe by a syringe
pump (ALC-IP900, Shanghai Alcott Biotech. Co., Ltd.) at a constant
rate of 1 mL h�1. TiO2 nanofibers were electrospun at 20 kV using a
high voltage power supply (Tianjin Dongwen High Voltage Facility)
with a 10 cm collection distance. TiO2 nanofibers were collected on
a grounded aluminum (Al) foil collector and left overnight in air to
fully hydrolyze, and then calcined in air at 500 �C for 6 h.

As-prepared TiO2 nanofibers were ground for 15 min, and then
mixed with sulfur at a weight ratio of 40:60. The mixture was ball-
milled for 2 h at 200 rpm in ethanol. The obtained mixture was
dried at 60 �C for 12 h to remove the solvent, and then heated to
155 �C for 12 h in a sealed 50 mL Teflon-lined stainless-steel auto-
clave. After cooling down to room temperature, the S–TiO2 com-
posite was obtained. The synthesis route for the S–TiO2

composite is illustrated in Fig. 1.

2.2. Material characterization

The synthesized products were characterized by powder X-ray
diffraction (XRD, Dmax/2500PC, Rigaku, Japan) with Cu Ka radia-
tion (k = 1.5406 Å), scanning electron microscopy (SEM, ZEISS
EVO 18, Germany), field emission scanning electron microscopy
(FESEM, JSM-6700F, Japan) and high-resolution transmission elec-
tron microscopy (HRTEM, FEI Tecnai G2 F20, operating at an accel-
erating voltage of 200 kV, USA). The elements on the surface of
S–TiO2 were identified by energy-dispersive X-ray spectroscopy.
The N2 adsorption/desorption tests were determined by Bru-
nauer–Emmett–Teller (BET) measurements using an NOVA1000
surface area analyzer. Thermogravimetric analysis (TGA) was car-
ried out to determine the weight content of sulfur in the composite
at a heating rate of 10 �C min�1 under N2 atmosphere.

2.3. Electrochemical measurements

The electrochemical tests were conducted by assembling coin-
type batteries (CR2025) in an argon-filled glove box and lithium
metal was used as both counter and reference electrode. The work-
ing electrodes were prepared by a slurry coating procedure. The
slurry was made by mixing 70 wt% S–TiO2 composite, 20 wt% acet-
ylene black and 10 wt% polyvinylidene fluoride in N-methyl-2-pyr-
rolidinone solvent. The slurry was uniformly spread onto Al foil

and dried at 60 �C for 12 h in a vacuum oven. The used electrolyte
was 1 M LiCF3SO3 in a mixed solvent of dimethoxyethane and
dioxolane with a volume ratio of 50:50 containing 0.1 M LiNO3

as an electrolyte additive. The discharge and charge performance
of half-cells was tested with LAND CT-2001A battery instrument
at a current density of 335 mA g�1 in the voltage range of 1.5–
3.0 V at ambient temperature, and rate performance was also
tested at different current densities in the same voltage range.
The specific capacity was calculated on the basis of the active sul-
fur material. Pure sulfur cathode was also prepared in the same
way just in the absence of TiO2 to compare with the S–TiO2 com-
posite. Pure TiO2 cathode was also prepared in the same way to
indicate its role in the S–TiO2 composite. Cyclic voltammogram
(CV) measurements were carried out on an electrochemical work-
station (CHI650D, Shanghai Chenhua Instruments Ltd.) at a scan
rate of 0.1 mV s�1 from 1.5 to 3.0 V at room temperature.

3. Results and discussion

XRD patterns of pure S, TiO2 and S–TiO2 are shown in Fig. 2. As
shown in Fig. 2(a), all patterns of pure S can be indexed to a mate-
rial having an orthorhombic structure, which is in good agreement
with the one listed in the X-ray powder diffraction data file (JCPDS
No. 24-0733) by the American Society for Testing Materials as
standard. Fig. 2(c) demonstrates that TiO2 possesses anatase
(JCPDS No. 01-0562)-rutile (JCPDS No. 65-0191) mischcrystal
structure. As for S–TiO2, there are no any new phases in the final
product except pure S and anatase-rutile mischcrystal, which could
be an indication of the absence of chemical reaction between the
composite components upon ball milling and the following heat
treatment [38,42], only peak densities decrease compared to those
of pure S and anatase-rutile mischcrystal, indicating the good dis-
persion of sulfur in the S–TiO2 composite [37]. It is obvious that the
added anatase-rutile mischcrystal does not change the crystal
structure of pure S.

TGA curve of S–TiO2 under N2 atmosphere is shown in Fig. 3. As
can be seen in Fig. 3, a weight loss of 57.5 wt% is found between
200 and 300 �C corresponding to the evaporation of sulfur. There-
fore, the sulfur content is determined to be 57.5 wt% in the S–TiO2

composite.
SEM image of pure S and FESEM images of TiO2 and S–TiO2 are

shown in Fig. 4. TEM image of S–TiO2 and FESEM image of S–TiO2

and the corresponding element mapping of Ti and S is also dis-
played in Fig. 4. Pore size distribution curves and the specific sur-
face areas of pure S and S–TiO2 are shown in Fig. 5. As shown in
Fig. 4(a), the particle size of pure S is around 10–50 lm and in

Fig. 1. The synthesis schematic diagram of S–TiO2. Fig. 2. XRD patterns of (a) Pure S, (b) S–TiO2 and (c) TiO2.
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