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a b s t r a c t

In a microfluidic flow cell activity pattern can occur along a thin band electrode due to the potential dis-
tribution in the cell. For quantitative characterization of the pattern formation exclusively due to electric
effect and for elimination of interactions of reaction sites from concentration distribution along the flow
channel, a partial differential equation model is formulated for the spatiotemporal variation of electrode
potential with Butler–Volmer kinetics limited by mass transfer. At constant applied circuit voltage, with
increase of the electrode size a limiting current is achieved because of the spatial pattern formation. The
limiting current arises due to the formation of high activity at the downstream edge, and low (nearly
open circuit potential) activity at the upstream edge. The spatial pattern (e.g., ratio of active vs. inactive
region) depends on the electrode size, the applied voltage, the conductivity of the electrolyte, and the
distance from the downstream electrode edge to the reservoir. It is also shown that by placing equally
spaced insulating stripes on the electrode much of the activity can be retained and the current does
not decrease significantly due to the lessened surface area (as long as the surface area of the insulating
stripes is less than about 50% of the entire electrode area). The model simulations are interpreted with
a coupled ordinary differential equation model of segmented electrodes and the occurrence of the strong
edge effects is confirmed with experiments of a four-electrode electrode array in a microfluidic flow cell
with ferrocyanide oxidation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Microfluidic devices that incorporate electrochemical flow-
through cells gained considerable interest in electroanalytical
chemistry [1–3], where one electrode can be used as a detector,
or multiple electrodes can be integrated in a generator–collector
detector system [4–6]. In addition, the devices can be used as
kinetic probes [7–10], in miniaturized biological and electrochem-
ical fuel cells as portable, renewable energy generators [11,12], for
electrosynthesis [13,14], or as template device in materials science
[15]. The mathematical modeling and theoretical analysis of elec-
trochemical systems, which are often required for the description
and optimization of the microfluidic devices, are challenging
tasks because of the presence of multiscale, integrated processes
[16,17]. Detailed descriptions for mass transfer, reactions kinetics,
and potential drop in the electrolyte are often required for
characterization of the spatiotemporal response of the cell in terms
of concentration and current density profiles [18,19].

Modeling efforts have been often focused on considering one or
two dominant types of processes (e.g., mass transport and chemi-
cal reaction); even with such simplifications, a wide variety of
responses are possible. For example, modeling of convective flow,
diffusion, and mass-transfer limited (quasistationary) charge-
transfer chemical reactions led to identification of six different
zones of different mass transfer characteristics of a single electrode
[20], and three major (sequential, coupling, and crosstalk) opera-
tional regions in dual electrode configurations [21]. Flow profiles
have been simulated computationally for various experimental
techniques such as chronoamperometry, linear and cyclic sweep
voltammetry [22–25] and, with similar approach, limitations on
experimentally measurable kinetic rate constants were obtained
as a function of cell geometry [7].

In addition to mass transfer, potential drop in the electrolyte
also has a great impact on the behavior of electrochemical cells.
In traditional macrocells potential drops can cause ohmic losses
resulting in bistability and oscillations [26], can impact explosive
growth of metastable pitting corrosion [27] and can induce
coupling resulting in stationary patterns [28,29], traveling and
standing waves [18], and synchronization patterns [30]. In
traditional configurations one of the simplest manifestation of
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pattern formation is the ‘edge effect’ when the shape of the elec-
trodes imposes a pattern because of the high activity of the edges
[31]. The presence of potential drop distribution in the flow chan-
nel proves to be a great challenge in the modeling of microfluidic
devices. On one hand, ohmic drops can be considered as a neces-
sary nuisance that could be avoided by non-traditional design of
counter [32] and reference [33] electrodes. In some examples,
modeling studies can help designing of cell geometry as it was
done with microfluidic electrokinetics [34] or with interdigitated
electrode arrays [35]. On the other hand, nonuniform potential
field can be advantageous, e.g., for bipolar electrode focusing [36]
or microelectrochemical gates and integrated circuits [37]. In
microfluidic settings the potential drop in the flow channel can
be very large because of the small volume of the conducting elec-
trolyte. For example, this ohmic potential drop can result in non-
uniform conducting polymer growth on a single electrode [15] or
in strong electrical coupling that can drive synchronous variations
of currents with electrocatalytic [38] and corrosion [39] systems.

In this paper, we explore the effect of potential distribution on
total current and current density distribution in a flow channel
for electrochemical reactions with Butler–Volmer kinetics with
mass transfer limitation on both single and segmented electrodes.
The primary goal of the model is to shed light on contributions of
non-uniform potential distribution to the unusually disparate
activity of the electrode edges. To eliminate interactions among
reacting sites due to concentration distribution, we consider uni-
form concentrations of analytes along the flow channel, and a thin
Nernst diffusion layer across the height of the flow channel. Numer-
ical simulations of the model equations are carried out with a single
electrode to explore the effect of electrode size and electrolyte con-
ductivity on quasistationary linear sweep voltammograms, in par-
ticular, to the onset potential and current density of limiting
current regions with large electrode widths. The role of edge effects
is clarified for electrode configurations with single (one-sided) and
double (two-sided) counter/reference electrode placements as well
as for segmented working electrodes. The numerical findings of
separation of high and low activity regions in the partial differential
equation model are interpreted with a coupled ordinary differential
equation model of segmented electrodes. Finally, the findings of
model equations are compared to an experimental measurement
with four segmented electrodes in microfluidic flow channel with
the ferrocyanide oxidation reaction on Pt.

2. The distributed system: model

The cell geometries used in this model are depicted in Fig. 1. All
of them represent two-dimensional approximation of a three-
dimensional microfluidic flow cell geometry, where the lateral
extension of the microcell was neglected. In the simplest geometry
from Fig. 1a, the working electrode (WE) of length W is embedded
in insulator, on the bottom side of the cell of length D and height H,
while L denotes the distance from the WE to the Reference Elec-
trode (RE). Both RE and the Counter Electrode (CE) are modeled
as an equipotential plane on the right side of the cell. (The refer-
ence and counter electrode are typically placed at the reservoir,
which has minimal ohmic potential drop because of the large size.)
Fig. 1b represents a more symmetrical situation, when both left
and right walls of the cell are described by equipotential planes
kept at the applied voltage; this would correspond to a cell geom-
etry with two CEs. Here L1 and L2 represent the distances from the
edges of the WE to the equipotential planes. Fig. 1c describes a seg-
mented WE, where active electrode stripes alternate with insulat-
ing regions.

At the WE, the charge balance equation reads:

imig ¼ icap þ iF ð1Þ

The migration current density (imig) is the sum of capacitive
(icap) and Faradaic (iF) terms. As a consequence:

CDL
@/DL

@t
¼ �r@u

@y

����
WE
� iFð/DLÞ ð2Þ

where u is the electrostatic potential in the electrolyte, t the time, y
the vertical coordinate, /DL is the potential drop across the electric
double layer in front of the WE, r is the electrical conductivity, and
CDL is the double layer capacitance per unit area of the WE [40]. We
define dimensionless quantities:

u0 ¼ F
RT

u ð3Þ

where F = 96,500 C/mol, R ¼ 8:314 J
mol K and T is the absolute

temperature. The /DL is rescaled in the same manner to give /0DL.
The dimensionless Faradaic current density is:

i0F ¼
iF

j0
ð4Þ

where j0 is the exchange current density. The dimensionless time is:

t0 ¼ Fj0

CDLRT
t ð5Þ

and the dimensionless coordinates are:

x0 ¼ x
L0

; y0 ¼ y
L0

ð6Þ

where L0 = 0.1 cm. Replacing Eqs. (3)–(6) in (2), we obtain the
dimensionless charge balance equation:

@/0DL

@t0
¼ �r0@u

0

@y0
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WE
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0
DLÞ ð7Þ

where the dimensionless conductivity is:

r0 ¼ r RT
FL0J0

ð8Þ

For the simplicity of notation, we drop the prime, and all quan-
tities referred from this point on, related to the spatially distrib-
uted system modeling, are dimensionless. In order to model the

Fig. 1. Electrochemical cell geometries. (a) 3-electrode flow cell, (b) Two counter
electrode (CE) cell and (c) Segmented working electrode (WE) cell. e.p. marks the
equipotential plane(s).
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