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The enzyme triosephosphate isomerase (TIM) is a model of catalytic
efficiency. The 11 residue loop 6 at the TIM active site plays a major role in
this enzymatic prowess. The loop moves between open and closed states,
which facilitate substrate access and catalysis, respectively. The N and C-
terminal hinges of loop 6 control this motion. Here, we detail flexibility
requirements for hinges in a comparative solution NMR study of wild-type
(WT) TIM and a quintuple mutant (PGG/GGG). The latter contained
glycine substitutions in the N-terminal hinge at Val167 and Trp168, which
follow the essential Pro166, and in the C-terminal hinge at Lys174, Thr175,
and Ala176. Previous work demonstrated that PGG/GGG has a tenfold
higher Km value and 103-fold reduced kcat relative to WT with either d-
glyceraldehyde 3-phosphate or dihyrdroxyacetone phosphate as substrate.
Our NMR results explain this in terms of altered loop-6 dynamics in PGG/
GGG. In the mutant, loop 6 exhibits conformational heterogeneity with
corresponding motional rates <750 s−1 that are an order of magnitude
slower than the natural WT loop 6 motion. At the same time, nanosecond
timescale motions of loop 6 are greatly enhanced in the mutant relative to
WT. These differences fromWT behavior occur in both apo PGG/GGG and
in the form bound to the reaction-intermediate analog, 2-phosphoglycolate
(2-PGA). In addition, as indicated by 1H, 15N and 13CO chemical-shifts, the
glycine substitutions diminished the enzyme's response to ligand, and
induced structural perturbations in apo and 2-PGA-bound forms of TIM
that are atypical of WT. These data show that PGG/GGG exists in multiple
conformations that are not fully competent for ligand binding or catalysis.
These experiments elucidate an important principle of catalytic hinge
design in proteins: structural rigidity is essential for focused motional
freedom of active-site loops.
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Introduction

Enzymes make extensive use of conformational
changes throughout their catalytic cycle that are, in
many cases, essential to their function. Triosepho-
sphate isomerase (TIM, EC 5.3.1.1) is an important
case in which motion plays a significant role in the
rate-limiting catalytic step. TIM is a very efficient
and faithful catalyst of the interconversion (Scheme
1) between dihydroxyacetone phosphate (DHAP)
and glyceraldehyde 3-phosphate (GAP), enabling
isomerization near the diffusion-limited rate,1 while
limiting formation of the toxic side product, methyl-
glyoxal, to only one molecule per 105 catalytic
cycles.2 A critical aspect of TIM catalysis is the par-
ticipation of a highly conserved active-site Ω loop,
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the 11 residue loop 6, which consists of three residue
N and C-terminal hinges and an intervening five
residue tip (Scheme 2). Ω loops typically reside on
the surface of proteins and consist of 6–20 amino
acid residues with a short distance (≤10 Å) between
the N and C-terminal residues, yielding a resem-
blance to the Greek letter Ω.3,4

In TIM, loop 6 plays a functional role via its motion
between two major conformational states: open and
closed (Figure 1). In the open conformation, the
substrate has ready access to both the active site and
the bulk solvent. The closed conformation is
observed in X-ray crystallographic studies in which
ligand is bound in the TIMactive site. Closure of loop
6 involves an approximately 7 Å movement at its tip
(Cα of Thr172). This closed form is stabilized by
hydrogen bonds between the amide NH of loop 6
residue Ala176 and the hydroxyl group of Tyr208
within loop 7 (residues 208–211) and between the
Ala176 carbonyl group and the Ser211 hydroxyl
group†. Notably, loop 6 closure is accompanied by
significant structural changes in loop 7 that allow
repositioning of the carboxylate group of Glu165,
which is the catalytic base, into its functionally
competent position.5–7 In addition, the central five
residues of loop 6 have been shown to be important
for preventing unwanted production of methyl-
glyoxal,2 yet the only direct contact of loop 6 with
the ligand is a single hydrogen bond between the
ligand phosphate group and the backbone NH of
Gly171. This stabilization of an intermediate state

and the possible coordination of loop 6 motion with
that of loop 7 and Glu165 facilitate the enzymatic
reaction, and physically allow passage of the ligand
between the active site and solvent. Thus, motion of
loop 6 is essential to overall function in TIM.
Several lines of evidence support the notion that

loop 6 motion is limiting to the reaction rate in the
direction of the DHAP to GAP interconversion,1

each placing loop motion of the order of 103–104 s−1

in yeast (Saccharomyces cerevisiae) TIM. Computa-
tional studies have long suggested that loop 6moves
on a microsecond timescale with rate-limiting
effect.8,9 Solid-state NMR relaxation studies10,11 of
2H-labeled Trp168 and solution-state NMR studies12

of 19F-labeled Trp168 also indicate that loop 6 moves
at a rate of 104 s−1 and in a manner that is likely rate-
limiting to catalysis. Furthermore, these rates were
confirmed by temperature-jump relaxation spectro-
scopy utilizing Trp168 fluorescence,13 and sup-
ported by a study revealing that conformational
motion on this timescale enhances 15N spin-relaxa-
tion rates within loop 6 and other sites vicinal to
it.14,15 In addition, the solid-state10 and solution-
state14,15 NMR experiments indicate that loop 6
moves in both apo and bound enzyme forms and,
therefore, that loop motion is not ligand-gated.
The interconversion between opened and closed

conformations of loop 6 is a rigid-body motion in
which only residues in the N and C-terminal hinges
experience changes in backbone dihedral angles.16,17
Hydrogen bonds involving loop 6 residues are
another prominent feature of the open-close motion.
Upon closure, the amide NH of Gly171 in the tip of
the loop comes within 2.8 Å of the O3 oxygen atom
in the substrate phosphate, whereas the NH of
Ala176 in the C-terminal hinge forms a critical
hydrogen bond with the Tyr208 hydroxyl in loop
7.8,18,19 Upon closure, tight intra-loop hydrogen
bonding also occurs between the amide groups of
Ala169 and Ile170 in the loop 6 center and carbonyl
groups of Pro166 and Val167 in the N-terminal
hinge, respectively. Not surprisingly, residues in
loop 6 are highly conserved in over 130 TIM
sequences as described,20 and as investigated by
genetic,21,22 kinetic23,24 and crystallographic20

means. In the loop 6 center, sequence conservation
is driven by a structure that: (1) encapsulates the
active site during catalysis; (2) facilitates the Gly171
backbone hydrogen bond to substrate and the intra-
enzyme hydrogen bonds of Ala169 and Ile170; and

Scheme 2. Highly conserved loop 6 sequence in TIM,
here labeled for amino acid residues 166–176 found in
chicken (Gallus gallus) TIM. Nomenclature used in the text
assigns N1, N2, N3 to N-terminal hinge residues 166–168
and C1, C2, C3 to C-terminal hinge residues 174–176,
respectively.

†Amino acid numbering follows the convention for
chicken (Gallus gallus) TIM.

Scheme 1. TIM-catalyzed reaction scheme (bracketed)
with enediolate intermediate and adjacent structure of the
reaction intermediate analog, 2-phosphoglycolate (2-PGA)
at the right.
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