

Available online at www.sciencedirect.com

The Third 20 Amino Acid Repeat Is the Tightest Binding Site of APC for β -Catenin

Jing Liu^{1,3}, Yi Xing¹, Thomas R. Hinds², Jie Zheng⁴ and Wenqing Xu^{1*}

¹Department of Biological Structure, University of Washington, Seattle WA 98195, USA

²Department of Pharmacology University of Washington Seattle, WA 98195, USA

³Biomolecular Structure and Design Program, University of Washington, Seattle WA 98195, USA

⁴Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN 38105, USA Adenomatous polyposis coli (APC) plays a critical role in the Wnt signaling pathway by tightly regulating β-catenin turnover and localization. The central region of APC is responsible for APC-β-catenin interactions through its seven 20 amino acid (20aa) repeats and three 15 amino acid (15aa) repeats. Using isothermal titration calorimetry, we have determined the binding affinities of β -catenin with an APC 15aa repeat fragment and each of the seven 20aa repeats in both phosphorylated and unphosphorylated states. Despite sequence homology, different β -catenin binding repeats of APC have dramatically different binding affinities with β -catenin and thus may play different biological roles. The third 20aa repeat is by far the tightest binding site for β -catenin among all the repeats. The fact that most APC mutations associated with colon cancers have lost the third 20aa repeat underlines the importance of APC- β -catenin interaction in Wnt signaling and human diseases. For every 20aa repeat, phosphorylation dramatically increases its binding affinity for β -catenin, suggesting phosphorylation has a critical regulatory role in APC function. In addition, our CD and NMR studies demonstrate that the central region of APC is unstructured in the absence of β -catenin and Axin, and suggest that β -catenin may interact with each of the APC 15aa and 20aa repeats independently.

Published by Elsevier Ltd.

Keywords: adenomatous polyposis coli (APC); β-catenin; isothermal calorimetry; unstructured protein; phosphorylation

Introduction

*Corresponding author

The tumor suppressor adenomatous polyposis coli (APC) is considered to be a gatekeeper in colorectal tumourigenesis.^{1,2} Truncational mutations of APC are found in Familial Adenomatous Polyposis (FAP) and more than 80% of sporadic colonic tumors.^{3–7} In addition to its roles in cytoskeletal and cell adhesion regulation,^{8,9} it is well established that APC plays an essential role in the Wnt-regulated degradation of β -catenin.^{10–14} *APC* encodes a large 310 kDa protein with multiple domains. The central region of APC includes three 15 amino acid (15aa) repeats and seven 20 amino acid (20aa) repeats.^{15,16} Mutations that truncate APC in the 20aa repeat region, such as that in SW480 colon cancer cells, lead to the accumulation of high

E-mail address of the corresponding author: wxu@u.washington.edu

levels of β -catenin.¹⁷ When full-length APC or the central region of APC were introduced into SW480 cells, β -catenin levels were reduced.¹² Furthermore, human APC2, an APC analogue containing five 20aa repeats and no 15aa repeats, has also been shown to interact with β -catenin and can decrease β -catenin levels and signaling activity in SW480 cells.^{18,19} All these results suggested a critical role for the APC 20aa repeats in β -catenin turnover.

Each of the APC 15a repeats, which is not regulated by phosphorylation, binds to the structural groove formed by β -catenin armadillo repeats 5– 10.²⁰ In comparison, every APC 20aa repeat region contains a highly conserved 20aa sequence with potential phosphorylation sites in a consensus motif SXXSSLSXLS (Figure 1(a)). Phosphorylation of APC by CK1 ϵ and GSK-3 β enhances its ability to bind and down-regulate β -catenin.^{21,22} *In vitro* isothermal calorimetric (ITC) analysis showed that phosphorylation of the third APC 20aa repeat increases its β catenin binding affinity by ~300-fold.^{23,24} Recently the crystal structures of phosphorylated APC 20aa repeat 3 in complex with β -catenin revealed that one single APC 20aa repeat together with its flanking

Abbreviations used: APC, adenomatous polyposis coli; aa, amino acids; ITC, isothermal titration calorimetry; CD, circular dichroism; NOE, nuclear Overhauser effect.

(a)

Tcf	GDDLGANDELISFK-DEGEQEE
E-cadhren	DPTAPPYDSLVFFD-YEG <mark>S</mark> G <mark>S</mark> EAASL <mark>S</mark> SLNSSSESD
APC R1	RSGQPQKAATCKVSSINQETIQTYC-VEDTPICFSRCSSLSSLSSAEDEIGCNQTTQEAD
APC R2	AVEFSSGAKSPSKSGAQTPKSPPEHYVQETPLMFSRCTSVSSLDSFESRSIASSVQSEPC
APC R3	KQAAVNAAVQRVQVLPDAD <mark>T</mark> LLHFA-TESTPDGFSCS <mark>SSLS</mark> AL <mark>S</mark> LDEPFIQKDVELRIMP
APC R4	PSQNRLQPQKHVSFTPGDDMPRVYC-VEGTPINFSTATSLSDLTIESPPNELAAGEGVRG
APC R5	FNDKLPNNEDRVRGSFAFDSPHHYTPIEGTPYCFSRNDSLSSLDFDDDDVDLSREKAELR
APC R6	STFPQSSKDIPDRGAATDEKLQNFA-IENTPVCFSHNSSLSSLSDIDQENNNKENEPIKE
APC_R7	$\tt ETEPPDSQGEPSKPQASGYAPKSFH-VEDTPVCFSRNSSLSSLSIDSEDDLLQECISSAM$
	- α α α
745 A	TCI-like Region Conserved Region
(b)	D1486
1	
	pT1487
180℃	
	P
-0-	Tcf-like Region Conserved Region
	pS1505 6 6 6
6	
	F1515
	p51504

Figure 1. Structural basis of the interaction between β -catenin and APC 20aa repeats. (a) Sequence alignment of Tcf, E-cadherin and APC 20 amino acid repeats. The conserved 20aa repeat regions of APC are framed by a black rectangle. Conserved Ser residues are shown in green. The two acidic residues that may interact with the charged buttons of β -catenin are highlighted in red.²⁵ Residues phosphorylated in the β -catenin/phospho-APC 20aa repeat and the β -catenin/phospho-E-cadherin complex structures^{23,24,26} are boxed in orange. The secondary structure was labeled as observed in the APC-R3 crystal structures. (b) Crystal structure of the β -catenin in complex with a phosphorylated APC-R3. Two views of the overall β -catenin/pAPC-R3 complex^{23,24} are related by a 180 degree rotation. The armadillo repeat region of β -catenin and p-APC-R3 are shown in green and red, respectively. Asp1486, the APC residue that forms a critical salt-bridge with the first charged button of β -catenin, and five residues that are phosphorylated *in vitro*, are shown in red sticks. Residue F1515 was also labeled to indicate the position where we made a nonsense mutation to test the contribution of the C-terminal flanking region.

Download English Version:

https://daneshyari.com/en/article/2189585

Download Persian Version:

https://daneshyari.com/article/2189585

Daneshyari.com