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a b s t r a c t

Polarographic experiments at dropping mercury electrodes belong to the classics of electroanalytical
techniques. Theoretical modelling and computer simulation of such experiments is often based on the
expanding plane model, which in the absence of homogeneous reactions is represented by one-dimen-
sional convection–diffusion partial differential equations. The latter equations can be converted to inte-
gral equations involving a specific kernel function. In the present study, the adaptive Huber method,
recently elaborated by the present author, has been extended to handle such a kernel function. The
resulting simulation technique has been tested on examples of integral equations representing simple
models of D.C. and A.C. polarography. The method is shown to provide automatic solutions, with a
user-selected target accuracy. Errors corresponding to the range from about 10�2 of the maximum solu-
tion value, down to about 10�7 or even smaller, can be easily achieved at a modest computational cost.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Trends to automate methods of scientific research with the help
of computers are noticeable in various areas of natural sciences,
including electroanalytical chemistry [1]. By following these
trends, in the series of papers by the present author [2–18] an
automatic method has been described, of solving integral equa-
tions (IEs) arising in the theory of transient electroanalytical exper-
iments [19]. The IE-based digital simulation [20,21] is one of the
approaches to the theoretical modelling in electrochemistry. The
method of Refs. [2–18] makes use of the classical Huber discretisa-
tion [22], which has been popular among electrochemists (see, in
particular, Refs. [20,23–36]). However, it has been supplemented
with an algorithm for the adaptive selection of discrete integration
steps. It therefore allows one to obtain solutions with a prescribed
accuracy, thereby releasing the method user from the troubles of
selecting computational grids and other details of the procedure.

The integrals occurring in the IEs of electroanalytical chemistry
usually involve products of unknown functions (which are to be
determined by solving the IEs), and diverse known functions,
termed kernel functions (for the introduction to IEs and related
terminology, see, for example, Ref. [37]). The adaptive Huber meth-
od of Refs. [2–18] works most satisfactorily when kernel-depen-
dent coefficients of the method are calculated analytically or by

using highly accurate approximations (preferably accurate at the
level of machine accuracy). This makes the resulting algorithm
more robust and less expensive computationally, compared to
algorithms in which the method coefficients are computed by
employing numerical quadratures or by solving auxiliary IEs (see,
for example, the methods proposed by Mirčeski et al. [38,39]). Rel-
evant formulae or approximations to the coefficients of the adap-
tive Huber method have already been developed for a number of
most frequently encountered kernel functions [2–18]. However,
there are still a few kernels that have not been incorporated into
the method. One of them is the kernel representing the convec-
tion–diffusion transport in the electrolytic solution at dropping
mercury electrodes (DMEs), in the absence of homogeneous
reactions:

Kðt; sÞ ¼ s2=3ðt7=3 � s7=3Þ�1=2
; ð1Þ

where t denotes time, and s is an integration variable (see next sec-
tion for further details, especially Eq. (6)). This kernel occurs in the
theory of a variety of polarographic experiments [19]. Examples of
IEs involving this kernel can be found in Refs. [40–55]. Although
the DMEs are currently relatively less popular than other kinds of
electrodes, a search on the Science Direct database still reveals over
600 publications related to the subject of ‘‘dropping mercury elec-
trode’’ in the period 2000–2013, and predictions can be found
[56,57] about continued uses of polarographic and drop formation
techniques in the future. The inclusion of the kernel (1) into the
adaptive Huber method is also a matter of completeness and re-
spect for classical polarography as one of the milestones of contem-
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porary electrochemistry. The ultimate goal of Refs. [2–18], and of
the present work, is to develop an automatic software for solving
all kinds of electrochemical models, independently of their current
popularity.

Electrochemical literature does not seem to contain applica-
tions of the Huber method to IEs involving the kernel (1). Lovrić
[55] described a simpler discretisation, a variation of the so-called
step-function method [20], by assuming that the product of the un-
known function of s, and the factor s�2/3, is approximated by a
piecewise constant function. In contrast, in the Huber method
the unknown functions are approximated by linear splines, which
is a more accurate approach. Furthermore, there have been no
applications of adaptive IE methods to IEs involving kernel (1).
For all the above reasons, in the present paper we describe an
extension of the adaptive Huber method onto this kernel function,
and demonstrate its utility using typical example IEs of interest to
electrochemistry.

2. Theory

Let us consider an electrochemical system comprising an elec-
trolytic solution and a working DME, at which a number of chem-
ical species participates in one or more electrochemical reactions.
The discussion below applies exclusively to species distributed in
the electrolyte phase. Let Xj be a jth of these species. According
to the standard expanding plane model of the DME (a lucid deriva-
tion of the model can be found, for example, in Section 4.4 of Ref.
[58]), the flux Jj(x, t) of the species Xj is given by the formula:

Jjðx; tÞ ¼ �Dj
@cjðx; tÞ
@x

� 2x
3t

cjðx; tÞ; ð2Þ

so that its transport in the electrolyte is governed by the spatially
one-dimensional convection–diffusion partial differential equation
(PDE):

@cjðx; tÞ
@t

¼ Dj
@2cjðx; tÞ
@x2 þ 2x

3t
@cjðx; tÞ
@x

: ð3Þ

In Eqs. (2) and (3) x denotes the distance from the surface of the
DME, t denotes time (from drop birth), cj(x, t) is the concentration
of the species, and Dj is its diffusion coefficient. In the case of elec-
troanalytical experiments using the DMEs, Eq. (3) is usually accom-
panied by the uniform initial condition:

cjðx;0Þ ¼ c�j ; ð4Þ

and the boundary condition

cjð1; tÞ ¼ c�j ; ð5Þ

where c�j is the concentration of Xj in the electrolyte bulk.
By solving analytically the incomplete initial boundary value

problem (3)–(5) with the help of the Laplace transform method,
one obtains [40–55] the following integral relationship between
the concentration and flux at the electrode:

cjð0; tÞ ¼ c�j þ D�1=2
j

7
3p

� �1=2 Z t

0
Kðt; sÞ Jjð0; sÞds; ð6Þ

where K(t, s) is the aforementioned kernel function (1) of interest
to the present study. Although the problem (3)–(5) is incomplete,
because it does not contain boundary conditions at x = 0, the rela-
tionship (6) can be derived, because both the concentration and
the flux of Xj depend on the same unknown integration constant.
In the spirit of the IE method, Eq. (6) must be written for all distrib-
uted species occurring in a particular model of an electroanalytical
experiment, and combined with the relevant boundary conditions
at x = 0 (not explicitly provided here). In this way one obtains one

or more IEs for the unknown fluxes Jj(0, t) at the electrode. The
fluxes, in turn, allow one to calculate the electric current.

An interesting property of the function (1) is that, unlike many
other kernels pertinent to the electroanalytical modelling (and pre-
viously included into the adaptive Huber method [2–18]), the ker-
nel (1) is not of convolution type. This means that K(t, s) does not
reduce to a function of the difference t � s, but it must be consid-
ered a function of two variables. Consequently, the name ‘‘convol-
utive modelling’’, preferred by Mahon and Oldham [59] to denote
the modelling approach essentially equivalent to IE solving, cannot
apply to this case, although it is still perfectly correct to use the
name ‘‘IE-based modelling’’. Despite this difference, the kernel (1)
is weakly singular at s = t, similar to the well known and frequently
encountered convolution kernel (t � s)�1/2 representing planar dif-
fusion in a semi-infinite spatial domain. According to the usual def-
inition (see, for example Ref. [60]), weak singularity means that
although the kernel is singular at s = t, its improper integralR t

0 Kðt; sÞds exists. For any fixed t value, K(t, s) is an increasing
function of s. Such a property is important for the numerical stabil-
ity of the Huber method [10] (and should also be important for the
stability of other similar methods). Fig. 1 depicts typical plots of
K(t, s).

2.1. Coefficients of the adaptive Huber method

As was discussed in Refs. [5–8], the kernel-dependent coeffi-
cients of the adaptive Huber method are given by the formulae:

Rn;l;k ¼
tkQ0;n;l;k � Q 1;n;l;k

tk � tl
; ð7Þ

Sn;l;k ¼
Q1;n;l;k � tlQ 0;n;l;k

tk � tl
; ð8Þ

Vn ¼
1
2

h�2
n t2

n�1 þ hntn�1
� �

Q 0;n;n�1;n � ð2tn�1 þ hnÞQ1;n;n�1;n

�
þQ 2;n;n�1;n

�
; ð9Þ

and

W1=2 ¼
1
2

h�2
1 ðQ2;1=2;0;1=2 � h1Q 1;1=2;0;1=2Þ; ð10Þ
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Fig. 1. Kernel function (1), plotted as a function of t/s, assuming various values of t
indicated in the figure.
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