

Available online at www.sciencedirect.com



Journal of Molecular and Cellular Cardiology

Journal of Molecular and Cellular Cardiology 45 (2008) 128-147

www.elsevier.com/locate/yjmcc

### Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes

**Review** article

Jens Kockskämper<sup>a,\*</sup>, Aleksey V. Zima<sup>b</sup>, H. Llewelyn Roderick<sup>c,d</sup>, Burkert Pieske<sup>a</sup>, Lothar A. Blatter<sup>b</sup>, Martin D. Bootman<sup>c</sup>

<sup>a</sup> Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria

<sup>b</sup> Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA

<sup>c</sup> Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK

<sup>d</sup> Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK

Received 3 April 2008; received in revised form 20 May 2008; accepted 21 May 2008 Available online 15 June 2008

#### Abstract

Inositol 1,4,5-trisphosphate (IP<sub>3</sub>) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP<sub>3</sub> from phosphatidylinositol 4,5bisphosphate (PIP<sub>2</sub>). The major action of IP<sub>3</sub>, which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce  $Ca^{2+}$  release from endogenous stores through IP<sub>3</sub> receptors (IP<sub>3</sub>Rs). Cardiac excitation–contraction coupling relies largely on ryanodine receptor (RyR)induced  $Ca^{2+}$  release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP<sub>3</sub>Rs (~100:1), and furthermore they experience substantial fluxes of  $Ca^{2+}$  with each heartbeat. Therefore, the role of IP<sub>3</sub> and IP<sub>3</sub>-mediated  $Ca^{2+}$  signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP<sub>3</sub>Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP<sub>3</sub>Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear  $Ca^{2+}$  signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP<sub>3</sub>Rs and membrane receptors that couple to PLC/IP<sub>3</sub> signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP<sub>3</sub> signaling in the pathology of these diseases. Thus, IP<sub>3</sub> exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation–contraction and excitation–transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure. © 2008 Elsevier Inc. All rights reserved.

Keywords: Inositol 1,4,5-trisphosphate; Cardiac myocyte; Calcium; Inotropy; Arrhythmias; Nucleus; Hypertrophy

#### Contents

| 1.  | The discovery of IP <sub>3</sub>                                                          | 129 |
|-----|-------------------------------------------------------------------------------------------|-----|
| 2.  | The ABC of IP <sub>3</sub> : where does it come from and where does it go?                | 129 |
| 3.  | Tools to study cardiac IP <sub>3</sub> signaling                                          | 131 |
| 4.  | The dilemma of cardiac IP <sub>3</sub> receptors: lost in an ocean of ryanodine receptors | 132 |
|     | General considerations on $IP_3$ and intracellular $Ca^{2+}$ homeostasis                  |     |
| 6.  | Elementary IP <sub>3</sub> -induced $Ca^{2+}$ release events in cardiac myocytes          | 133 |
| 7.  | IP <sub>3</sub> signaling in cardiac development                                          | 133 |
| 8.  | IP <sub>3</sub> signaling in atrial myocytes                                              | 135 |
| 9.  | IP <sub>3</sub> signaling in ventricular myocytes                                         | 137 |
| 10. | IP <sub>3</sub> Rs in other cardiac cells                                                 | 138 |

\* Corresponding author. *E-mail address:* jens.kockskaemper@meduni-graz.at (J. Kockskämper).

<sup>0022-2828/</sup>\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.yjmcc.2008.05.014

| 11. Is nuclear $Ca^{2+}$ regulated independently from cytoplasmic $Ca^{2+}$ ? Putative relevance of IP <sub>3</sub> -dependent nuclear $Ca^{2+}$ signaling |         |                                              |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|----|--|
|                                                                                                                                                            | for exc | tation-transcription coupling                | 9  |  |
| 12.                                                                                                                                                        | Patholo | gical relevance of IP <sub>3</sub> signaling | 0  |  |
|                                                                                                                                                            | 12.1.   | Atrial fibrillation                          | 0  |  |
|                                                                                                                                                            | 12.2.   | Reperfusion arrhythmias                      | 0  |  |
|                                                                                                                                                            | 12.3.   | Arrhythmias related to ankyrin-B mutations   | 1  |  |
|                                                                                                                                                            | 12.4.   | Diabetic cardiomyopathy.                     | 1  |  |
|                                                                                                                                                            | 12.5.   | Hypertrophy and heart failure                | 1  |  |
| 13.                                                                                                                                                        | Unreso  | lved questions and future perspectives       | 2  |  |
| Ackn                                                                                                                                                       | owledgn | nents                                        | 2  |  |
| Refer                                                                                                                                                      | ences   |                                              | -2 |  |
|                                                                                                                                                            |         |                                              |    |  |

#### 1. The discovery of IP<sub>3</sub>

A quarter of a century ago it was shown that D-myo inositol 1,4,5-trisphosphate (IP<sub>3</sub>) releases  $Ca^{2+}$  from a non-mitochondrial internal  $Ca^{2+}$  store [1]. Since this hallmark discovery, IP<sub>3</sub> has emerged as a ubiquitous intracellular messenger, releasing Ca<sup>2+</sup> from stores through activation of IP<sub>3</sub> receptors (IP<sub>3</sub>Rs) in almost all eukaryotic cells. The major IP<sub>3</sub>-sensitive intracellular Ca<sup>2+</sup> store is the endoplasmic reticulum. However, IP<sub>3</sub> has also been shown to release Ca<sup>2+</sup> stored in other compartments, such as the Golgi and the nuclear envelope [2]. In addition, IP<sub>3</sub>Rs are present on the plasma membrane of some cell types, where they can gate  $Ca^{2+}$  influx [3]. A crucial role for IP<sub>3</sub>-dependent Ca<sup>2+</sup> release has been demonstrated in many mammalian cell types, ranging from tiny platelets, where it initiates blood clotting, to the impressive dendritic trees of cerebellar Purkinje neurons, where it is involved in the regulation of motor function. In the cardiovascular system, IP<sub>3</sub>-induced Ca<sup>2+</sup> release from the sarcoplasmic reticulum (SR) plays a key role in pharmacomechanical coupling in smooth muscle cells of the vasculature, and thus in the regulation of peripheral resistance and blood pressure. Despite being recognized as a potential messenger in cardiac myocytes nearly two decades ago, the role of IP<sub>3</sub> has been enigmatic. However, a number of recent reports have begun to unravel the physiological and potentially pathological actions of IP<sub>3</sub> within the heart.

## **2.** The ABC of $IP_3$ : where does it come from and where does it go?

IP<sub>3</sub> is generated by hydrolysis of phosphatidylinositol 4,5bisphosphate (PIP<sub>2</sub>) through phosphoinositide-specific phospholipase C (PLC). PIP<sub>2</sub> is a relatively minor phospholipid (~1% of total anionic phospholipids), but it is the main polyphosphoinositide in the sarcolemma. Its concentration in myocardium is in the range of 10–30 µM or 150–450 pmol/mg protein [4,5]. PIP<sub>2</sub> itself serves important signaling functions, including the regulation of ion channels and transporters and the anchoring of cytoskeletal proteins at the membrane [6,7]. Furthermore, it is the precursor of phosphatidylinositol 3,4,5trisphosphate (PIP<sub>3</sub>), a phosphoinositide involved in cell signaling. There are at least 13 phosphoinositide-specific PLC isoforms grouped into six subfamilies:  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon$ ,  $\eta$  and  $\zeta$  [8,9]. Members of the  $\beta$ ,  $\gamma$ ,  $\delta$  and  $\varepsilon$  subfamilies are expressed in cardiac myocytes. PLCs may be activated by heptahelical G protein-coupled receptors (PLCB), receptor tyrosine kinases (PLC $\gamma$ ), PIP<sub>2</sub> and Ca<sup>2+</sup> (PLC $\delta$ ) or Ras (PLC $\varepsilon$ ). Consequently, many transmitters, neurohormonal factors, hormones and other stimuli (e.g. stretch) may increase IP<sub>3</sub> concentration and activate IP<sub>3</sub>-induced Ca<sup>2+</sup> release in cardiac myocytes downstream of PLC activation. Upon stimulation, intracellular IP<sub>3</sub>, or inositol phosphate concentration in general, has been shown to increase by a factor of > 12 [10]. However, it should be pointed out that most of these data were determined from assays of measuring total inositol phosphate accumulation over time (in the presence of the inositol monophosphatase inhibitor Li<sup>+</sup>). Such measurements do not reflect the in vivo steady-state IP3 increase, which is likely to be quite modest. Recently, the concentration of free IP<sub>3</sub> was estimated directly using a novel FRET-based biosensor. Following maximal stimulation of  $\alpha$ -adrenergic and endothelin receptors, free IP<sub>3</sub> in cardiac myocytes increased to  $\sim 30$  nM [11]. While such biosensors are useful for detecting genuine increases in IP<sub>3</sub> concentration, they are less helpful in revealing the kinetics of IP<sub>3</sub> turnover, since binding of IP<sub>3</sub> to the probe buffers the molecule and protects it from hydrolyzing enzymes. Based on modeling studies, it was estimated that stimulation of atrial myocytes with endothelin transiently increases IP<sub>3</sub> concentration from a basal value of ~15 nM to a maximal value of  $\sim 35$  nM within  $\sim 400$  s, after which the IP<sub>3</sub> level gradually declines and returns to baseline within tens of minutes [12]. A note of caution as to the quantitative results obtained with isolated myocytes is warranted though, since careful studies indicate that PIP<sub>2</sub> and inositol phosphate levels drop dramatically during the isolation procedure [13,14].

Because IP<sub>3</sub> is hydrophilic, it translocates from the sarcolemma to the cytoplasm upon formation from PIP<sub>2</sub>. The main cytoplasmic target of IP<sub>3</sub> is IP<sub>3</sub>Rs in the membrane of the ER/SR. There are three IP<sub>3</sub>R isoforms, denoted type 1, type 2 and type 3. Current evidence suggests that the heart expresses all three IP<sub>3</sub>R isoforms, although there is some inconsistency in the literature regarding their relative ratios in different cardiac cells. It has been proposed that type 1 IP<sub>3</sub>Rs are dominant in human atrial and rat Purkinje myocytes [15,16], whereas atrial and ventricular myocytes from most other animal species express predominantly type 2 IP<sub>3</sub>R and, to a lesser extent, type 3 IP<sub>3</sub>R (e.g. [17,18]). Overall, the majority of studies have concluded that the most prevalent IP<sub>3</sub>R isoform within contractile cardiomyocytes is type 2 (see Table 1). The few reports describing

Download English Version:

# https://daneshyari.com/en/article/2191827

Download Persian Version:

https://daneshyari.com/article/2191827

Daneshyari.com