Contents lists available at ScienceDirect

Mammalian Biology

journal homepage: www.elsevier.com/locate/mambio

Original Investigation

Impact of anthropogenic disturbance on the density and activity pattern of deer evaluated with respect to spatial scale-dependence

Naoki Agetsuma^{a,*}, Ryosuke Koda^b, Riyou Tsujino^c, Yoshimi Agetsuma-Yanagihal

- ^a Wakayama Experimental Forest, Hokkaido University, Japan
- ^b Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
- ^c Center for Natural Environment Education, Nara University of Education, Japan
- ^d Hirai 343-1, Kozagawa, Wakayama 649-4563, Japan

ARTICLE INFO

Article history: Received 20 December 2012 Accepted 24 May 2013 by Luca Corlatti Available online 21 June 2013

Keywords: Cervus nippon yakushimae Activity Density Land use Spatial scale

ABSTRACT

of wildlife. The magnitude of the effects will Anthropogenic disturbance modifies various ecological change depending on spatial scale. The for wildlife co ration, the effective spatial scale at which the disturbance has the greatest e s on wild populations hust be determined. This study examined the influence of anthropogenic di bance on two cological traits (population density and daily activity pattern) of deer. We quantified effects of la ise (broad-leaved forest, mixed coniferous/broad-, forestry area, and agricultural land), hunting risk, leaved forest, natural grassland, st ine vegeta wild and densities of feral domestic dog keys. The effects of land use were analyzed at various spatial scales a del selecti dure (generalized mixed model) was used to examine logical traits at each spatial scale. Combinations of selected variables significant variables differed with ecologic scales. The spatial scale of the best model was defined as the most effective spatial s ch ecoogical trait. Deer density was affected positively by areas of natnsity, and negatively by areas of forestry, mixed forest and agricultural ural gras id mon land a ffective tial scale. For the daily activity pattern, larger areas of agricultural land, and higher hunting risk reduced diurnal and induced nocturnal activity. natura assland a sm ale explaining population density was smaller than that of daily activity st eff d that agricultural land, forestry areas and hunting risk affected deer ecology enic disturbance. However, each disturbance factor modified different ecological traits or as anth modified L cological traits at different spatial scales. Detecting the appropriate spatial scales at which nthropogeni turbance should be managed is essential for wildlife conservation.

© 2013 Deutsche Gesellschaft für Säugetierkunde. Published by Elsevier GmbH. All rights reserved.

2008).

Introduction

Anthropogenia wildlife populations ers their ecology in variworldwide (B 200 g., Hockin et al., 1992; Blom ous ways. T opula et al., 206 and Sieving, 2012), activity pattern Presley et al., 2009), habitat use (e.g., Kilpati 2008; Fletcher and Hutto, 2008; Hockin et al., (e.g., Coulon et sholls et al., 2008) and other ecological traits 1992; Markovchic (Hockin et al., 1992) nl change depending on the type and magnitude of disturbance. Identical disturbance may affect different ecological traits of wildlife (Gill et al., 2001; Kilgo et al., 1998). The influences of anthropogenic disturbance on wildlife ecology are complex, and can have both negative and positive effects on species (e.g., Fletcher and Hutto, 2008; Markovchick-Nicholls et al.,

populations, altering numbers of individuals through modifications of resource availability and shelter sites. Such a disturbance may favor some wildlife species. For example, the density of raccoons (Procyon lotor) has increased in urban and suburban areas (Riley et al., 1998) following considerable habitat modifications. Furthermore, the abundances of some fruit bats (Phyllostomidae) are greater in farmland or secondary forests than in primary forests (Willig et al., 2007). However, habitat transformation often induces negative impacts on wild populations. The density of the Japanese monkey (Macaca fuscata) decreases in areas with coniferous plantations (Hill et al., 1994) and ungulates tend to avoid exposed areas without shelter sites (Mysterud and Ostbye, 1999).

Hunting and control measures also alter population density, activity pattern and habitat use of wildlife. White-tailed deer (Odocoileus virginiana) show significant shifts of core-area use and daily activity pattern between the prehunt and hunt period

Habitat transformation is a major disturbing factor for wild

^{*} Corresponding author. Tel.: +81 735 77 0321; fax: +81 735 77 0301. E-mail address: agetsuma@fsc.hokudai.ac.jp (N. Agetsuma).

(Kilpatrick and Lima, 1999). In addition, the existence of domestic dogs (*Canis familiaris*) induces alert and flight behaviors in wildlife (Hockin et al., 1992; Miller et al., 2001; Sweeney et al., 1971), and decreases the densities of certain species (Silva-Rodriguez and Sieving, 2012).

Thus, wild populations may be exposed to various types of anthropogenic disturbance that may have both negative and positive impacts. To cope with disturbance, wildlife may change density, activity pattern and other ecological traits as a result of the trade-offs between negative and positive impacts (Gill et al., 1996a).

To evaluate anthropogenic disturbance on wild populations, we should consider the extent of the effects across space, because the magnitude of disturbance on wildlife varies with spatial scales (Coulon et al., 2008). Therefore, responses of wild populations to disturbance, as well as to natural factors, depend on spatial scales (Anderson et al., 2005). Many studies have fixed the scales (buffer sizes) in advance by referring to ecological bases, such as home range sizes of individual animals (e.g., Boyce et al., 2003; Fletcher and Hutto, 2008; Zweifel-Schielly et al., 2009). However, we cannot identify ecologically meaningful scales exactly a priori (Zweifel-Schielly et al., 2009). Ideally, we should use the spatial scale at which the factors show the most significant effects on wild populations for analyses; otherwise the significant factors may not be detected. Therefore, for wildlife conservation, we must detect the most effective spatial scale and manage the significant anthropogenic disturbance at that scale.

This study examined the effects of anthropogenic disturbance on two ecological traits (population density and daily activity pattern) of Japanese sika deer (Cervus nippon). In this study, forestry areas, agricultural lands, hunting risk and feral dogs are regarded as of anthropogenic disturbance, and we quantified the effects of factors as well as those of natural factors. We analyzed the e of land use at various spatial scales to detect the most effective tial scale. We then made the following three predictions ncerni anthropogenic disturbance. Prediction 1: deer be neg ıd dog atively affected by forestry areas, hunting right isity, and positively affected by agricultural lands Ind tsuma, 2007; tations may decrease natural resource deel Gill et al., 1996b), hunting and dog uld directi d indirectly a, 1999; Sir decrease deer numbers (Kilpatria odriguez lucts may attract deer. and Sieving, 2012), whereas agricultural d forestry area will Prediction 2: hunting risk, cultural lan modify daily activity pat because human ities are likely to r dee ysterud and Ostbye, 1999). As restrict diurnal activity III decrease and nocturnal activivit a result, deer diurna ity will increase under nsturba Prediction 3: the most er 🎍 effective spate will veen ecological traits (deer density an ity pati cause different anthropogenic ıly a olve density and activity through different disturb s may mechani

Material and Me

Study area and subjects

Yakushima is a roughly circular mountainous island (peak 1936 m, area 503 km²: Fig. 1) located in Kagoshima Prefecture, southern Japan (30°N, 130°E). Approximately 13,500 residents live in more than 20 villages mainly located less than 100 m above sea level (a.s.l.). Agricultural fields including orange orchards, rice paddies, pastures and artificial facilities lie below approximately 200 m a.s.l. Intensive logging of evergreen broad-leaved forests were conducted below approximately 800 m a.s.l. from the 1960s to 1970s. Following logging, coniferous trees (*Cryptomeria japonica*)

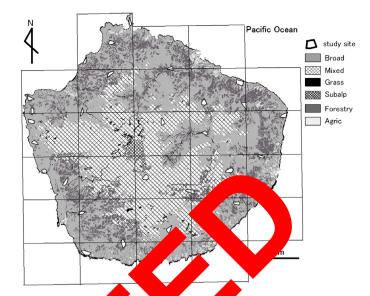


Fig. 1. Land use and sites on shima. Study sites are expressed and of by minimum co olygons suri cameras within each study site st, Mixed: m miferous/broad-leaved forest. Grass: Broad: broad a, Sub balpine vegetation, Forestry: forestry area, Agric: agrinatural grass cultural land. Natural gra distributed very thinly around the coast and rivers. The i f hunted deei ummarized in approximately $4.6 \, \text{km} \times 6 \, \text{km}$ cells

planted ely (Agetsuma, 2007). The area from approximate solution in a.s.l. is dominated by mixed forests including conficult agreen and deciduous broad-leaved trees. In the sublpine region (above 1800 m a.s.l.), vegetation comprises shrubs lodendron and grasslands of dwarf bamboo (*Pseudosasa watarii*). Thus, in this island, natural vegetation forms zonation with changing altitude (Fig. 1) (Ohsawa et al., 2006; Tagawa, 1994).

The annual precipitation varies with location and ranges from 2500–8700 mm (Environment Agency, 1984). Along the coast, the annual mean temperature is approximately 20 °C, which corresponds to the margin between subtropical and warm temperate zones (Tagawa, 1994). However, above 1000 m a.s.l., the climate is much cooler, with snowfall in winter and an annual mean temperature of approximately 10 °C (Ohsawa et al., 2006).

The subject of this study is a subspecies of the Japanese sika deer (*Cervus nippon yakushimae*) that is endemic to Yakushima and Kuchinoerabujima (38 km²), an island located 12 km northwest of Yakushima. *C. n. yakushimae* has the smallest body size among the subspecies of Japanese sika deer (Izawa et al., 1996). The deer population, which decreased greatly from the 1960s to 1970s due to habitat destruction (Agetsuma, 2007), has been recovering since the 1990s. The deer inhabit most regions of the island, ranging from the coast to the subalpine zone. However, population density varies considerably with location (Agetsuma, 2007; Koda et al., 2011).

The staple diet of the deer comprises leaves, fruits and seeds of woody plants (Takatsuki, 1990), which are available largely as forest litter (Agetsuma et al., 2011). The deer also feed on food dropped from trees by Japanese monkeys (Macaca fuscata yakui) that also inhabit most regions of the island. This accounts for 7% of time spent feeding for deer in a broad-leaved forest (Agetsuma et al., 2011). Because monkeys can provide relatively higher quality foods (fruits and seeds) from tree canopies (Agetsuma et al., 2011), monkeys attract deer in the forest (Koda, 2012).

The mean annual range size of an individual of deer in a broad-leaved forest, expressed as 90% fixed kernel, is 12 ha (7–17 ha, n=4) for adult females and 36 ha (4–78 ha, n=4) for adult males (Agetsuma et al., 2005). They have very stable ranges lasting for years; however, some adult males occasionally emigrate 4–8 km

Download English Version:

https://daneshyari.com/en/article/2193637

Download Persian Version:

https://daneshyari.com/article/2193637

<u>Daneshyari.com</u>