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a  b  s  t  r  a  c  t

By  the  development  of information  theory  in  1948  by  Claude  Shannon  to address  the  problems  in  the  field
of data  storage  and  data  communication  over  (noisy)  communication  channel,  it has  been  successfully
applied  in  many  other  research  areas  such  as  bioinformatics  and  systems  biology.  In this  manuscript,  we
attempt  to  review  some  of the  existing  literatures  in  systems  biology,  which  are  using the  information
theory  measures  in  their  calculations.  As we  have  reviewed  most  of  the  existing  information-theoretic
methods in gene  regulatory  and  metabolic  networks  in  the  first  part of  the  review,  so  in  the  second
part  of  our  study,  the application  of information  theory  in  other  types  of  biological  networks  including
protein–protein  interaction  and  signaling  networks  will  be surveyed.

© 2015  Elsevier  Ltd.  All  rights  reserved.

Contents

1. Introduction  . .  .  . . .  . .  .  . . .  . . . .  . . . .  . . . .  . . .  .  . . .  .  . . .  .  . . . .  . . .  . . . .  . . .  . . . . .  . .  . . . . .  . .  .  . . . .  . .  .  . . . . . .  .  . . . . . .  .  . . . . . . .  . . . .  .  . .  . .  .  .  .  . . .  . .  .  .  . . .  . .  .  .  .  .  .  .  .  .  . .  . . . . .  . . . .  .  .  .  .  .  14
2.  Preliminaries  from  information  theory  .  .  .  . .  .  . . . . . . . . . .  . . . . .  . . . . . . .  .  . . . .  .  .  .  .  . . . . . .  . . . . . . . .  .  . . . .  . . .  . . . . . . . .  . . . . . . .  . . . . .  . .  .  .  .  . . . . .  .  . . . .  .  .  .  .  . . .  . .  . .  . . .  .  . . .  . 15

2.1.  Discrete  channel  and  channel  capacity  . . .  .  .  . .  .  .  . .  .  . . . . . . .  .  . . . . . .  .  .  . . .  . . .  . . . . . .  .  . . . . . . .  . . . . . . .  . . . . .  . . .  . .  .  . . . . . . .  .  . . .  .  . .  . . . . . . . . .  .  . . .  . .  .  . .  . .  . . .  .  . 15
2.2.  Rate  distortion  theory  . .  .  . . .  . . . . . . .  .  . . . .  . . . .  . . . .  . . . . . . .  .  . . . . . .  .  . . . . . .  .  . . . . . .  .  . . . . . . . . . . . . .  .  . . .  . . . . . .  .  . .  .  . . .  .  . . .  . .  .  .  . . .  . . .  . . . . . . . .  .  . .  .  .  .  .  . . . . . .  . . . 15

3.  Applications  of information  theory  in  systems  biology  .  .  . . .  . . . . . . .  .  . . . . . .  .  . . . . .  .  . .  . . . . .  . . . . . .  . . .  .  . . . . .  . . .  . . . . . . .  . . .  . . . . . . . . .  .  .  . . .  .  .  .  . . .  .  . . . . . . . . .  .  .  . .  . 15
3.1. Protein–protein  interaction  network  . . .  .  . . .  .  . . .  .  . . .  .  . . . . .  .  .  . .  . . . . .  . .  . . .  .  .  . . . . . .  .  . . . . . . . . . .  .  .  . . . . . .  .  . . .  . . . . .  . .  . .  .  . . . . . . . .  . . . . .  .  .  .  .  . .  . . . .  . . . . . .  . . 16

3.1.1. Finding  protein  complexes  . .  . . .  .  . . .  .  . . .  .  . . .  . . .  .  . .  .  . . . .  .  .  .  . . .  . . . .  . . .  . .  .  . . . . .  . .  . . . . .  . . .  . . . . .  . . .  . .  .  . . . .  . . .  . . .  .  . . .  .  .  . .  .  . . . . . .  . . .  .  .  .  .  . .  . . .  .  16
3.1.2.  Complexity  analysis  . . .  .  . . .  .  . . .  . . . .  . . .  . . . .  .  . . .  .  . .  . . .  .  .  . . . .  .  . .  . . .  . . .  . . . .  . . .  . .  . . .  . . .  . . .  . . . .  .  . . . . . . .  .  . . . .  . . .  .  . . .  . . . . . .  .  . .  . .  .  . . .  .  . .  . . .  . . . . . 17
3.1.3.  Identification  of  biomarkers  .  . . .  .  .  . .  .  . . .  .  . . .  . . . . . . .  . . . . . . .  .  . .  . . . .  .  . . . . . . . .  . . . . .  .  . .  . . .  . . .  . . . .  .  . .  . .  . . .  . . .  .  . . . . . . . . .  .  . . . .  . .  .  .  .  .  . . . . .  .  . . . . . 17
3.1.4.  Study  of  network  robustness  . . .  . .  .  .  . . .  .  .  . .  . . .  .  . .  .  .  . . .  . .  .  .  . .  . . . .  . . .  . . .  . . .  . . . . . . .  . . . . . . .  .  . . . . . .  .  . . . . . .  . . . . . . .  .  . .  . .  .  .  . . . . . .  . . . . . .  .  .  .  . . . . .  18

3.2. Signaling  networks  . . . .  . . .  .  . . .  .  . .  . . . .  . . .  .  . . .  .  . . .  .  . . .  .  . . . . . .  .  . . . . . . .  . . . .  . . . . . . . . .  .  . . . . . . .  . .  . . .  .  . . . .  . . . . .  . . .  . . . . . .  .  . . . . . . . .  .  .  . . .  . .  .  . .  .  . . . .  . . .  .  . .  .  . . 18
4.  Conclusion  .  . .  .  . . . .  . . . .  .  . . .  .  .  . . .  . . .  .  . .  . . . . . . .  .  . . .  .  . . .  . . . .  . . . .  . . . . . .  .  . . . . .  .  . . . . . . . . .  . . .  . .  .  . . . . .  . .  . . . . .  . . .  . .  . . . . . .  . . .  . . . .  .  . .  . . .  .  . . . . . . . . . .  .  .  .  .  . . .  . . .  . . . . .  . . 22

References  .  . . . .  . .  .  . . . .  . . . .  .  . . .  . . . .  . . .  .  . . .  . . . . . .  .  . . .  .  .  . .  .  .  . .  .  . . .  .  . .  .  . . .  . . . .  . . . . . . .  . . . . . . . .  . . . . . .  . . . . .  . .  .  .  .  . .  . . .  . . . . . . .  .  . . .  .  . .  . . .  . . . . . .  .  . . .  .  .  .  . . .  .  .  . . . . .  . . 23

1. Introduction

Information theory was developed by Claude Shannon, to
primarily address the main limitations on signal processing oper-
ations, including data compression and reliable data storing and
communication. After the beginning of information theory, it has
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rapidly widened to find applications in many other research top-
ics such as probability theory, statistics, mathematics, economics,
computer science, physics, and also to more away disciplines such
as bioinformatics and systems biology. Systems biology is the study
of biological components at the system level, and information
theory provides a theoretical framework to study the relations
between components.

In this review, we  address the wide applications of infor-
mation theory in the field of systems biology. Only a limited
reviews has been published which have focused on a particu-
lar biological network like signaling network [1–5] or a specific
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application such as reverse engineering of cellular networks [6,7],
and they do not attempt to cover all applications of informa-
tion theory in all biological networks. As in the first part of our
review, gene regulatory networks and metabolic networks have
been surveyed, so in the second part, the main focus puts on
the information-theoretic studies in the area of protein–protein
interaction networks and signaling networks. In protein–protein
interaction network, various problems including complex identi-
fication, complexity analysis, determining subnetwork markers,
among others, have been addressed by the use of information
theory. Furthermore, to study the rate of signal transmission in
signaling networks and estimate the channel capacity in such
networks, information theoretic approaches have been published
by researchers.

The rest of this manuscript is organized as follows: Section
2 briefly introduces some basic concepts of information theory
framework, for more details readers can refer to the first part of
this review. Moreover, two new information-theoretic measures
like the channel capacity and the rate distortion theory will be
introduced in Section 2. Different applications of information the-
ory in protein–protein interaction and signaling networks will be
surveyed in Section 3. Finally, the second part of our review will be
concluded in Section 4.

2. Preliminaries from information theory

The preliminary concepts of information theory have been
introduced in the first part of our review. However, we have a brief
introduction about the basic information theoretic concepts in this
part and the readers can refer to the first part of our review for
more details. Furthermore, channel capacity and rate distortion
theory are two important information-theoretic concepts which
have been used in signaling networks, and we have also an intro-
duction about them in this section.

A fundamental concept of information is entropy which charac-
terizes the amount of uncertainty for prediction of the value of a
random variable. The entropy of a discrete random variable X with
alphabet � and the probability mass function p(x) is defined as:

H(X) = −
∑
x ∈ �

p(x) · log p(x)

Let X and Y be two discrete random variables having the joint prob-
ability mass function p(x,y), the joint entropy is calculated as:

H(X, Y) = −
∑
x ∈ �

∑
y ∈ Y

p(x, y) · log p(x, y)

The entropy of a random variable conditional on the knowl-
edge of another random variable is called conditional entropy and
calculated as follows:

H(Y |X) =
∑
x ∈ �

p(x)H(Y |X = x)

A relation can be defined between the joint entropy and the
conditional entropy as:

H(X, Y) = H(X) + H(Y |X)

Another type of entropy is the relative entropy, also known as
Kullback–Leibler Distance, which quantifies the distance of two dis-
tribution functions. The relative entropy of two distributions with
the probability functions p(x) and q(x) is defined as:

D(p||q) =
∑
x ∈ �

p(x) · log
p(x)
q(x)

Mutual information is a key measure of information theory and it
can be assumed as a relative entropy between the joint distribution
p(x,y) and the product distribution p(x)·p(y):

I(X; Y) =
∑
x ∈ �

∑
y ∈ �

p(x, y) · log
p(x, y)

p(x) · p(y)

= D(p(x, y)||p(x).p(y))

The mutual information also indicates the size of shared informa-
tion between two  random variables. So it can measure the amount
of reduction in the uncertainty about one random variable when
another variable is known:

I(X; Y) = H(X) − H(X|Y)

Finally, the conditional mutual information is defined as the
shared information between two  random variables due to the
knowledge of the third variable:

I(X, Y |Z) = H(X|Z) − H(X|Y, Z)

2.1. Discrete channel and channel capacity

A discrete channel can be defined as a system containing channel
input and output symbols A  and B respectively. The probability of
having the symbol b in output given that the symbol a has been sent
in channel input is represented in the probability transition matrix
(b|a).

A channel is called a memoryless channel, if the probability
distribution of the output is not conditionally dependent on the pre-
vious channel inputs or outputs and only depends on the channel
input at the current time.

Now we  can define the information channel capacity C as:

C = max
p(x)

(I(X; Y))

in which X and Y are defined over A  and B respectively. For a discrete
memoryless channel, p(x) is the distribution of input random vari-
able x and the maximum of I is taken over all possible distributions
p(x).

Some properties are associated with the channel capacity mea-
sure:

• C ≥ 0
• C ≤ log |A| and C ≤ log |B|

2.2. Rate distortion theory

The distance between the random variable X and its image X̂ is
called a distortion measure. For example the number of bits which
is required for describing a real number is infinite and therefore a
finite representation of it can never be perfect. The rate distortion
theory addresses the problem of finding the minimal number of bits
per each source symbol that should be communicated over channel
such that the source can be approximately reconstructed at the
receiver without exceeding a predefined amount of distortion D. It
can be formally defined as a following minimization problem:

R(D) = min
E[d(X,X̂)]≤D

I(X, X̂)

3. Applications of information theory in systems biology

Systems biology is an emerging discipline that aims to
understand complex biological systems by computational and
mathematical modeling, and information theory can help to
achieve this. In following, different studies will be reviewed which
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