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1. Introduction

Over the last decade network theory has become a unifying
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Fig. 1. Isomorphic graphs with two different adjacency matrix representations,
illustrating that the adjacency matrix is not an invariant of a graph under rela-
belings. However, similar graphs have adjacency matrices with similar algorithmic
information content.

directly affected by a number of other genes, and are usually rep-
resented by directed graphs.

Classical information theory has for some time been applied to
networks, but Shannon entropy, like any other computable mea-
sure (i.e. one that is a total function, returning an output in finite
time for every input), is not invariant to changes of object descrip-
tion [45].

More recently, algorithmic information theory has been
introduced as a tool for use in network theory, and some inter-
esting properties have been found [40,42,46]. For example, in [40]
correlations were reported among algebraic and topological prop-
erties of synthetic and biological networks by means of algorithmic
complexity, and an application to classify networks by type was
developed in [42].

We review and explore further these information content
approaches for characterizing biological networks and networks
in general. We provide theoretical estimations of the error of
approximations to the Kolmogorov complexity of graphs and com-
plex networks, offering both exact and numerical approximations.
Together with[40]and [42], the methods introduced here represent
anovel view and constitute a formal approach to graph complexity,
while providing a new set of tools for the analysis of the local and
global structure of networks.

2. Graph notation and complex networks

A graph G is labeled when the vertices are distinguished by
names such as uq, uy, ... up with n=|V(G)|. Graphs G and H are said
to be isomorphic if there is a bijection between the vertex sets of G
and H, A : V(G) — V(H) such that any two vertices u and v € G are
adjacent in G if and only if A(u) and A(v) are adjacent in H. When
G and H are the same graph, the bijection is referred to as an auto-
morphism of G. The adjacency matrix of a graph is not an invariant
under graph relabelings. Fig. 1 shows two adjacency matrices for iso-
morphic graphs. A canonical form of G is a labeled graph Canon(G)

that is isomorphic to G, such that every graph that is isomorphic
to G has the same canonical form as G. An advantage of Canon(G)
is that unlike A(G), A(Canon(G)) is a graph invariant of Canon(G)
[1].

One of the most basic properties of graphs is the number of links
per node. When all nodes have the same number of links, the graph
is said to be regular. The degree of a node v, denoted by d(v), is the
number of (incoming and outgoing) links to other nodes. We will
also say that a graph is planar if it can be drawn in a plane with-
out its edges crossing. Planarity is an interesting property because
only planar graphs have duals. A dual graph of a planar graph G is
a graph that has a vertex corresponding to each face of G, and an
edge joining two neighboring faces for each edge in G.

A popular type of graph that has been studied is the so-called
Erdés-Rényi [12,14] (ER) graph, in which vertices are randomly and
independently connected by links with a fixed probability (also
called edge density) (see Fig. 2 for a comparison between a regular
and a random graph of the same size). The probability of vertices
being connected is called the edge probability. The main charac-
teristic of random graphs is that all nodes have roughly the same
number of links, equal to the average number of links per node.
A ER graph G(n, p) is a graph of size n constructed by connecting
nodes randomly with probability p independent from every other
edge. Usually ER graphs are assumed to be non-recursive (i.e. truly
random), but ER graphs can be constructed recursively with, for
example, pseudo-random algorithms. Here we will assume that ER
graphs are non-recursive, as theoretical comparisons and bounds
hold only in the non-recursive case. For numerical estimations,
however, we use a pseudo-random edge connection algorithm, in
keeping with common practice.

ER random graphs have some interesting properties, but biolog-
ical networks are not random. They carry information, connections
between certain elements in a biological graph are favored or
avoided, and not all vertices have the same probability of being con-
nected to other vertices. The two most popular complex network
models consist of two algorithms that reproduce certain character-
istics found in empirical networks. Indeed, the field has been driven
largely by the observation of properties that depart from properties
modeled by regular and random graphs. Specifically, there are two
topological properties of many complex networks that have been a
focus of interest. A simple graph is a graph with no self-loops and no
multi-edges. Throughout this paper we will only consider simple
graphs.

A network is considered a small-world graph G (e.g. see Fig. 3)
if the average graph distance D grows no faster than the log of
the number of nodes: D~ log V(G). Many networks are scale-free,
meaning that their degrees are size independent, in the sense that
the empirical degree distribution is independent of the size of the
graph up to a logarithmic term. That is, the proportion of vertices
with degree k is proportional to yk® for some 7>1 and constant
y. In other words, many empirical networks display a power-law
degree distribution.

Fig. 2. Examples of two regular graphs (left and middle) are a 2n circular graph with 20 nodes and a complete graph with 20 nodes, both of whose descriptions are very
short, hence K(G) ~ log |V(G)| ~4.32 bits. In contrast, a random graph (right) with the same number of nodes and number of links requires more information to be specified,
because there is no simple rule connecting the nodes and therefore K(G) ~ [E(G)| = 30 bits.
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