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a  b  s  t r  a  c  t

Signaling  proteins  are  flexible  in  both  form  and  function.  They  can bind  to multiple  molecular  part-
ners  and  integrate  diverse  types  of  cellular  information.  When  imaged  by time-lapse  microscopy,  many
signaling  proteins  show  complex  patterns  of  activity  or localization  that vary  from  cell  to  cell.  This  het-
erogeneity  is  so  prevalent  that  it  has  spurred  the  development  of  new  computational  strategies  to  analyze
single-cell  signaling  patterns.  A  collective  observation  from  these  analyses  is that  cells  appear  less hetero-
geneous  when  their  responses  are  normalized  to,  or synchronized  with,  other  single-cell  measurements.
In  many  cases,  these  transformed  signaling  patterns  show  distinct  dynamical  trends  that  correspond
with  predictable  phenotypic  outcomes.  When  signaling  mechanisms  are unclear,  computational  models
can suggest  putative  molecular  interactions  that  are  experimentally  testable.  Thus,  computational  anal-
ysis of single-cell  signaling  has  not  only  provided  new  ways  to quantify  the  responses  of individual  cells,
but has  helped  resolve  longstanding  questions  surrounding  many  well-studied  human  signaling  proteins
including  NF-�B,  p53,  ERK1/2,  and  CDK2.  A  number  of  specific  challenges  lie  ahead  for  single-cell  analysis
such  as quantifying  the contribution  of  non-cell  autonomous  signaling  as well  as  the  characterization  of
protein  signaling  dynamics  in  vivo.

© 2014  Elsevier  Ltd. All  rights  reserved.
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1. Introduction

The ability to visualize signaling proteins in real time and at
single-cell resolution has revealed a staggering picture of complex-
ity in cellular signal transduction. Genetically identical cells can
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show vastly different signaling patterns—even under basal condi-
tions or in response to the same stimulus. In fact, if there has been
one lesson learned from single-cell dynamics, it is that variability
from cell to cell is the rule rather than the exception. Cells in the
same culture dish can show patterns of gene or protein expression
that vary over several orders of magnitude [1–3], and signaling pat-
terns measured in real time are noisy and asynchronous [4,5]. These
observations present major challenges for understanding single-
cell signaling: How much of the observed heterogeneity from cell
to cell is meaningful? Are the observed patterns variations of a sin-
gle signaling response or are there multiple responses? If there
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are multiple responses, how can we distinguish among different
signaling patterns in individual cells?

The idea that a single signaling protein can display multiple
behaviors is already well appreciated in the field of intrinsically
disordered proteins (IDPs), the focus of this special issue. It has
long been observed that certain proteins associated with signal
transduction have unusually high levels of disordered regions in
their peptide sequence [6–8]. This trend may  reflect the tendency
for signaling proteins to have multiple binding partners as well
as multiple functionalities in the cell [6,8,9]. It is our observation
that many IDPs (or those involved in signaling complexes with
disordered proteins) have been examined by fluorescence time-
lapse microscopy. Often, these proteins display rich and complex
signaling dynamics in single cells (Fig. 1). This is yet another indi-
cation that signaling proteins are structurally pliable molecules
capable of sophisticated information processing [10]. As such, the
variability of single-cell protein dynamics of IDPs adds additional
challenges and opportunities for understanding the role of these
proteins in cell signaling and disease.

In this review, we examine how signaling patterns among
individual cells have been resolved through the use of computa-
tional analyses. We first introduce some of the different patterns
of signaling observed in individual cells across different cellular
pathways. Since this topic has been reviewed elsewhere in depth
[11,12], we provide a brief overview of the variety of signaling
patterns observed among mammalian proteins and highlight the
insight gained from an exciting set of recent studies [1,13–18].
These studies are drawn together by a common set of computa-
tional approaches used to analyze signaling patterns in individual
cells. We  find that these approaches are essentially variations of
existing methods for normalizing and comparing biological data.
However, they are specifically tailored toward the heterogeneous
temporal data gathered from single cells. In many cases these
approaches not only resolve, but also make use of, cell-to-cell
heterogeneity by relating variation in signaling to differences in
downstream behaviors. We  further show how single-cell signaling
has been modeled computationally to predict cellular behaviors
and suggest new mechanistic interactions. Finally, we  discuss spe-
cific challenges for understanding single-cell signaling responses
that must build on existing work in the field.

2. Single-cell dynamics of human signaling proteins

An increasing number of human signaling proteins have been
characterized in living cells including several proteins with signifi-
cantly disordered protein structures (Fig. 1). These studies typically
quantify protein abundance over time using a fluorescent reporter
protein that is covalently linked to the coding region of the pro-
tein of interest [19,20]. In cases where the enzymatic activity of the
protein is more biologically relevant than its expression level, it is
necessary to use a genetically encoded biosensor that exhibits con-
formational changes that reflect changes in the enzymatic activity
of interest [21]. These biosensors include, for example, fluorescent
substrates that mimic  endogenous cleavage sites used to mea-
sure protease activity [22]. Once the fluorescent reporter is stably
expressed, cells are cultured directly on the microscope, relevant
perturbations are performed, and images are acquired periodi-
cally at a time scale that is appropriate for the biological process
under investigation [11]. Segmentation borders are then drawn to
separate neighboring cells. The resulting data set is a time series
of fluorescence intensity values that reveal how the protein, or
enzyme activity, changes over time in individual cells.

Human signaling proteins show a wide range of dynamical
behaviors including pulses [13,18,23], bursts [14], oscillations [24],
switches [25], and decays [26]. One of the best-studied proteins

in single cells is the stress response factor NF-�B. NF-�B is a tran-
scription factor that responds to cytokines, inflammation, and other
cellular stresses. Upon activation with inflammatory stimuli such
as tumor necrosis factor � (TNF�), NF-�B localizes to the nucleus
and promotes transcription of I�B�, an inhibitor that binds to NF-
�B and triggers export of NF-�B to the cytoplasm. Activation of
NF-�B and subsequent expression of I�B� leads to multiples cycles
of NF-�B nucleo-cytoplasmic shuttling. Live-cell imaging of NF-�B
localization has revealed that, after stimulation with TNF�, NF-�B
shows a prominent first pulse of activity followed by a series of
long-term pulses [24]. At low doses of TNF�, activation of NF-�B
is highly heterogeneous with the majority of cells showing all-or-
nothing activity [27].

Additional signaling proteins in the immune response have
been characterized in individual cells. Notably, two isoforms of the
nuclear factor of activated T-cells (NFAT1 and NFAT4) show dra-
matically different nuclear localization dynamics in response to
calcium stimulation [14]. NFAT1 responds slowly to stimulation,
showing prolonged occupation of the nucleus over several hours. In
contrast, NFAT4 shows rapid and repeated bursts of nuclear local-
ization that last between 5 and 10 min. Although it is premature
to make any firm conclusions, it appears that a large proportion
of signaling proteins that have been measured in live cells show
some form of pulsatile signaling. Whether “frequency modulated”
signaling is a pervasive theme in biology remains to be determined
[11,12,28]. If so, it would suggest that the temporal pattern of pro-
tein signaling may  be as relevant as its absolute abundance. Such
a finding expands our notion of good indicators of functional rele-
vance to include both expression levels and dynamical patterns of
activity.

Another well-characterized protein in live cells is the tumor
suppressor p53 [23,29]. Following DNA damage, p53 undergoes
posttranslational modification that frees it from Mdm2, an E3 ubi-
quitin ligase that promotes rapid degradation of the p53 protein.
However, because Mdm2  is also a target gene product of p53, the
induced elevation of p53 eventually promotes its own  degrada-
tion, leading to periodic accumulation of nuclear p53. p53 dynamics
were originally predicted to be damped oscillations based on pop-
ulation measurements of p53 and Mdm2  by Western blot [30].
When imaged in single cells, however, p53 signaling was  shown to
occur in a series of pulses with uniform width and height [23,31].
Rather than increasing the absolute levels of p53, larger doses of
DNA damage increases the number of consecutive pulses.

As a well-recognized intrinsically disordered protein, p53 has
also been examined at the single-molecule level to understand its
binding and oligomerization properties [32]. Following initial work
to characterize the binding affinity of p53 to DNA using ensemble
methods such as analytical ultracentrifugation [33], fluorescence
correlation spectroscopy was  used to determine the precise kinet-
ics of p53 oligomerization [34]. More recently, analysis of p53
oligomerization dynamics in single cells confirmed that dimers are
the predominant form under basal conditions. Interestingly, after
DNA damage, formation of p53 tetramers precedes increases in
p53 protein levels suggesting that p53 oligomerization is dynami-
cally regulated in response to genotoxic stress [35]. These examples
show how the structural disorder of a signaling molecule may  affect
its cellular function and regulation.

Additional components of the DNA damage response were
recently characterized in single human cells. Two  members of
the hypoxia-inducible factor family of transcription factors (HIF-
1� and -2�),  which can bind both Mdm2  [36] and p53 [37] to
alter cellular stress responses, show a single 3 h pulse that is
rapidly terminated under continuous hypoxic conditions [13]. The
p53 binding protein 1 (53BP1), which localizes to double-strand
DNA breaks, shows exponential decay kinetics that reflect the
rate of DNA repair in individual cells. When combined with a
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