

Contents lists available at ScienceDirect

Seminars in Cell & Developmental Biology

journal homepage: www.elsevier.com/locate/semcdb

Review

Developmental control of imprinted expression by macro non-coding RNAs

Federica Santoro, Denise P. Barlow*

CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria

ARTICLE INFO

Article history: Available online 17 February 2011

Keywords:
Genomic imprinting
Macro ncRNAs
Development
Mouse
Human

ABSTRACT

Genomic imprinting is a developmentally regulated epigenetic phenomenon. The majority of imprinted genes only show parent-of-origin specific expression in a subset of tissues or at defined developmental stages. In some cases, imprinted expression is controlled by an imprinted macro non-coding RNA (ncRNA) whose expression pattern and repressive activity does not necessarily correlate with that of the genes whose imprinted expression it controls. This suggests that developmentally regulated factors other than the macro ncRNA are involved in establishing or maintaining imprinted expression. Here, we review how macro ncRNAs control imprinted expression during development and differentiation and consider how this impacts on target choice in epigenetic therapy.

© 2011 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	328
2.	Imprinted macro ncRNAs are developmentally regulated	329
3.	Imprinted gene expression: how does it begin?	330
4.	Windows of opportunity for macro ncRNAs	331
5.	Silencing by imprinted macro ncRNAs: initiation or maintenance?	332
6.	Developmental control of imprinted gene silencing: clinical implications	333
	Acknowledgements	334
	References	334

1. Introduction

Mammals are diploid organisms and while the majority of genes are equally expressed from both chromosomes, a subset are subject to genomic imprinting and show maternal- or paternal-specific expression [1]. To date, 143 imprinted mouse genes are known that are mostly grouped into clusters [2]. Imprinted expression within a cluster is controlled by epigenetic mechanisms that act *in cis* (i.e.: on the same chromosome). The master regulator controlling expression of all genes in a cluster is the imprint control element (ICE) [3]. Each ICE is epigenetically marked on either the maternal or the paternal allele by a DNA methylation "imprint" acquired during gametogenesis and maintained on the same parental chromosome in diploid cells of the embryo after fertilization. The six best-studied mouse imprinted gene clusters in which the ICE was identified by deletion experiments are the *lgf2r*, *Kcnq1*, *lgf2*, *Gnas*, *Dlk1* and *Pws/As* clusters (reviewed in [4]).

All defined ICEs control expression of a macro or long nonprotein-coding RNA (ncRNA) (defined here as a ncRNA >200 bp that is not processed to smaller RNAs). However, allele-specific silencing occurs by different mechanisms. For example, imprinted expression at the Igf2 cluster arises because the ICE acts as a methylation-sensitive insulator interacting with CTCF and cohesin only on the unmethylated maternal allele that exclusively expresses the H19 ncRNA (reviewed in [4]). Imprinted expression at the Igf2r and Kcnq1 clusters (Fig. 1) is controlled, respectively, by the Airn and Kcnq1ot1 macro ncRNAs, whose methylationsensitive promoter lies in the ICE [5,6]. Airn and Kcnq1ot1 are exclusively transcribed from the paternal allele as the gametic DNA methylation imprint represses the maternal promoter. Truncation experiments in mice that shortened these ncRNAs to 5% of their length show that they control paternal silencing of all genes in their cluster in embryonic and placental tissues [7,8].

Macro ncRNAs are now known to be widespread in the mammalian genome and are thought to function as transcriptional regulators although few have been studied in detail [9]. Here, we review the developmental regulation of imprinted macro ncRNAs, focusing on the *Airn* and *Kcnq1ot1* ncRNAs that play a functional silencing role. We consider how ncRNA developmental regulation

^{*} Corresponding author. Tel.: +43 1 40160 70031. E-mail address: dbarlow@cemm.oeaw.ac.at (D.P. Barlow).

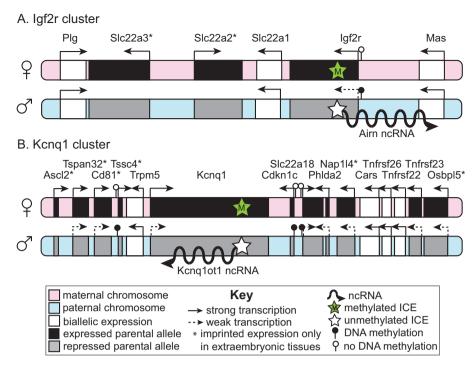


Fig. 1. Two mouse imprinted gene clusters containing a regulatory macro ncRNA. Genomic organization of the mouse Igf2r (A) and Kcnq1 (B) imprinted gene clusters.

impacts on imprinted expression of flanking protein-coding genes. Finally, we discuss the choice of macro ncRNAs as targets in epigenetic therapy.

2. Imprinted macro ncRNAs are developmentally regulated

Genome-wide studies of macro ncRNAs revealed developmental and tissue-specific expression patterns, suggesting they are not unspecific "transcriptional noise" [9]. The expression of imprinted

macro ncRNAs is also highly regulated (Table 1), and in most cases, imprinted expression of flanking protein-coding genes in the cluster correlates with ncRNA expression. The paternally expressed *Kcnq1ot1* macro ncRNA displays the most widespread expression pattern: it is found already in preimplantation embryos from the two-cell stage and maintained throughout mouse development, correlating with imprinted expression of flanking protein-coding genes [10,11]. Production of the *Airn* macro ncRNA correlates with *Igf2r* imprinted expression. *Airn* is absent from post-mitotic

Table 1Developmental- and tissue-specific regulation of imprinted macro ncRNAs.

Imprinted cluster	ncRNA	Developmental-specific expression	Tissue-specific expression
Igf2r	Airn	From implantation stage; differentiated ESCs [24]	Ubiquitous, except neurons [12]
Kcnq1	Kcnq1ot1	From 2-cell stage [10]	Ubiquitous [11]
Igf2	H19	From blastocyst stage; differentiated ESCs [53]	Embryonic and extraembryonic tissues [15,53]; adult: skeletal muscle, thymus, heart, lung [53]
	Igf2as	From E10.5 till postnatal day 4 [54]	Skull, muscle, placenta [54]
Gnas	Nespas Exon1A	E10.5 and E15.5 ^a ; adult [17–19] n.a.	Widespread [17–19] Ubiquitous [55]
Dlk1	Gtl2	Continuous [56]	Widespread in fetus [21]; adult: brain, testis, spinal cord, skeletal muscle [57]
	Rtl1as	From E8.5 ^a [58]	Brain [57]
	Rian	From E9.5 [57]	Extraembryonic tissues; embryo: brain, somites and cartilage; adult: brain, testis, skin, heart, muscle [57]
	Mirg	From E11.5 [57]	Embryonic and extraembryonic tissues [59]; adult: mainly brain, limbs, tongue, skin, testis [57]
	Mico1	From E8.5 ^a [60]	Embryo: brain, heart, branchial arches; adult: mainly brain, pituitary, spleen, kidney, uterus [60]
	Mico1os	From E8.5 ^a [60]	Embryo: brain, heart, branchial arches; adult: mainly brain, pituitary, spleen, kidney, uterus [60]
Pws/As	Lncat ^b	From E10.5 [16]	Post-mitotic neurons [16]

Abbreviations: n.a.: not analyzed; ESCs: embryonic stem cells; E: embryonic day; ubiquitous: expressed in all tested tissues.

^a Not tested earlier.

b Includes U exons, Ube3a-ats, Ipw and Pwcr1 ncRNAs.

Download English Version:

https://daneshyari.com/en/article/2202938

Download Persian Version:

https://daneshyari.com/article/2202938

<u>Daneshyari.com</u>