

Seminars in Cell & Developmental Biology 17 (2006) 233-243

seminars in
CELL & DEVELOPMENTAL
BIOLOGY

www.elsevier.com/locate/semcdb

Review

Thirty years of calcium signals at fertilization

Shunichi Miyazaki*

Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan Available online 23 February 2006

Abstract

It was discovered about 30 years ago that a dramatic increase in intracellular calcium ion concentration ($[Ca^{2+}]_i$) occurs at fertilization and that this increase acts as the pivotal signal for egg activation. Later, the Ca^{2+} signal at fertilization turned out to be ubiquitous among animal species. Extensive advance has been brought during these 30 years in research on spatiotemporal aspects and signaling mechanisms of the $[Ca^{2+}]_i$ increase, sperm factors that induce the Ca^{2+} response, and cell cycle resumption caused by the $[Ca^{2+}]_i$ rise. I provide a historical account of these advances in mammals, sea urchins, and a few other models.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Fertilization mechanism; Sperm-egg interaction; Intracellular calcium; Sperm factor; Egg activation

Contents

1.	Introduction	233
2.	Early studies that proved the Ca ²⁺ hypothesis	234
3.	[Ca ²⁺] _i rise in protostome eggs	234
	Research of Ca ²⁺ signals in mammalian and ascidian eggs	234
5.	Ca ²⁺ release mechanisms	235
6.	Ca ²⁺ waves and Ca ²⁺ oscillations mediated by the IP ₃ receptor	236
	Sperm receptor hypothesis or sperm factor hypothesis	
8.	Candidates of Ca ²⁺ oscillation-inducing (or egg-activating) sperm factor	237
9.	Characteristics of PLCζ	238
10.	Signaling downstream the [Ca ²⁺] _i rise	239
11.	Summary: overview of fertilization Ca ²⁺ signals	239
	11.1. Ca ²⁺ waves and Ca ²⁺ oscillations	239
	11.2. Sperm factor	240
	Acknowledgements	240
	References	240

1. Introduction

During these 30 years we have become aware that a dramatic increase in $[Ca^{2+}]_i$ occurs at fertilization in eggs of every animal species ever examined [1]; this has been accomplished by invention and the development of the method of $[Ca^{2+}]_i$ measurement and Ca^{2+} imaging. Unfertilized eggs are arrested at a certain stage of meiotic cell division in a species-specific manner and

are released from the arrest by fertilization. This phenomenon is referred to as "egg activation". The $[Ca^{2+}]_i$ rise at fertilization is a pivotal signal for egg activation and is responsible for triggering early embryogenesis [1]. Research has focused on the phenomenon and mechanism of the fertilization Ca^{2+} signal. The first subject was to record the $[Ca^{2+}]_i$ rise. A " Ca^{2+} wave" that starts from the site of sperm–egg fusion and propagates across the egg cytoplasm has been extensively analyzed since it was first recorded in eggs of medaka fish in 1978 [2]. On the other hand, the $[Ca^{2+}]_i$ rise was thought to occur synchronously in the eggs of protostome animals [3,4]. Besides the spatial pat-

^{*} Tel.: +81 3 5269 7414; fax: +81 3 5269 7414. E-mail address: shunm@research.twmu.ac.jp.

tern of [Ca²⁺] rise represented by the Ca²⁺ wave, the temporal pattern was characterized by repetitive [Ca²⁺]; rises designated as "Ca²⁺ oscillations" that were first reported in mammalian eggs in 1981 [5,6]. The next subject was concerned with the mode of Ca²⁺ mobilization: whether it was due to intracellular Ca²⁺ release from the endoplasmic reticulum (ER) or Ca²⁺ influx from outside of the cell. Both pathways are mediated by Ca²⁺-permeable channels of the plasma membrane or the ER membrane. Research on signal transduction and intracellular second messengers was advanced in parallel with that of Ca²⁺ dynamics and signaling in somatic cells [7]. In the early 1990s, a critical discussion arose about the mechanism by which the [Ca²⁺]_i rise was induced by the sperm: whether it was mediated by sperm-egg surface interaction (the sperm receptor hypothesis that depended on sperm-egg binding) or was caused by a cytosolic sperm factor driven into the ooplasm (the sperm factor hypothesis that depended on sperm-egg fusion). Candidates of the sperm factor have been proposed in mammals. Another essential subject is the signaling mechanism that is downstream the [Ca²⁺]_i rise and leads to resumption of cell cycle. This paper presents a synthesis of the data accumulated over the last 30 years dealing with these questions.

2. Early studies that proved the Ca²⁺ hypothesis

The concept of Ca²⁺ as a signal for egg activation arose in the early 1930s from artificial activation experiments suggesting that leak-in of extracellular Ca²⁺ may cause parthenogenetic activation [8]. Mazia measured increased Ca²⁺ in ultrafiltrates of homogenates of sea urchin Arbacia eggs immediately after fertilization [9]. However, no further experimental basis for the Ca²⁺ hypothesis had been provided until Steinhardt et al. showed in 1974 that the Ca²⁺ ionophore A23187, a novel tool for Ca²⁺ mobilization, caused activation of sea urchin [10], starfish, toad, and hamster [11] eggs. The source of Ca²⁺ was thought to be intracellular Ca²⁺ release, because egg activation was induced independently of the ionic composition of the external medium [10,11]. The next advance was brought by the use of the Ca^{2+} sensitive luminescent protein "aequorin" of the jelly fish [12]. In 1977, Ridgeway et al. [13] succeeded in recording an explosive [Ca²⁺]_i rise at fertilization or upon application of A23187 in aequorin-injected large eggs (diameter, ~1.1 mm) of medaka *Oryzias latipes*. Steinhardt et al. [14] also demonstrated a [Ca²⁺]_i rise in sea urchin eggs, although they measured total luminescence of aequorin in several eggs. In 1978, Gilkey et al. [2] first presented images of a propagating Ca²⁺ wave in a medaka egg. The wave velocity was $\sim 10 \,\mu\text{m/s}$, consistent with that of a wave of "cortical alveolus breakdown" (i.e., exocytosis) which Yamamoto had already found in 1939 [15]. The Ca²⁺ wave was not affected by external Ca²⁺, and injection of Ca²⁺ buffer into the egg caused a propagating Ca²⁺ wave as well as egg activation [2]. Therefore, the Ca²⁺ wave was thought to be mediated by a form of "Ca²⁺-induced Ca²⁺ release" (CICR) similar to that found in the sarcoplasmic reticulum (SR) of muscle cells at that time [17]. Imaging of the Ca²⁺ wave in much smaller sea urchin eggs was acquired by Eisen et al. in 1984 [16]. These pioneering experiments not only substantiated the Ca²⁺ hypothesis but also revealed the Ca²⁺ wave which propagated the signal over the entire egg from the stimulus point of the sperm fusion site.

3. [Ca²⁺]_i rise in protostome eggs

In the early 1980s, Lionel Jaffe proposed a hypothesis predicting that, in protostome eggs, $[Ca^{2+}]_i$ rise is due to Ca^{2+} influx, unlike deuterostome eggs [3,4]. This idea was based on the slow and non-wave-like pattern of exocytotic secretion, or measurement of $^{45}Ca^{2+}$ influx in animals of which eggs do not exhibit an exocytotic reaction [4]. Direct measurement and/or imaging of the $[Ca^{2+}]_i$ rise was performed after 1990 and revealed that this prediction was basically true for the first Ca^{2+} response [1]. The exception is that additional repetitive Ca^{2+} release in protostome animals such as nemertean worms (Fig. 1H) [18], bivalve Mytilus (Fig. 1G) [19], and polychaete worms (Fig. 1F) [20]. Jaffe's prediction stimulated succeeding work on Ca^{2+} signals, which resulted in the universal concept of Ca^{2+} -dependent egg activation.

4. Research of Ca^{2+} signals in mammalian and ascidian eggs

The technology of mammalian in vitro fertilization (IVF) had been established by the early 1970s, but reports on the fertilization potential and Ca²⁺ response first appeared in 1981. Miyazaki and Igusa showed that the fertilization potential of golden hamster eggs was a series of periodic hyperpolarizations, recorded during monospermic fertilization in eggs freed from the zona pellucidae [5]. Since each hyperpolarization was due to Ca²⁺-activated K⁺ conductance increase [5,21], this phenomenon indirectly indicated that repetitive [Ca²⁺]_i rises likely accompany mammalian fertilization. In the same year Cuthbertson et al. also showed multiple [Ca²⁺]_i rises using aequorin in mouse eggs [6], although it was unknown whether the experimental condition was normal fertilization or not. In 1986, repetitive Ca²⁺ transients in hamster eggs were recorded by a Ca²⁺-sensitive microelectrode [22] and aequorin luminescence [23], and Ca²⁺ waves were demonstrated in monospermic eggs with aequorin and a super-sensitive camera system [23]. Thus, research of the fertilization Ca²⁺ signal in mammalian eggs began and advanced several years later than that of sea urchin and medaka eggs. As more data accumulated, a characteristic temporal Ca²⁺ signal, Ca²⁺ oscillations, turned out to be common to mammalian eggs (Fig. 1A) [24]. Furthermore, periodic Ca²⁺ waves originating near the vegetal pole of the egg were found in ascidian eggs (Fig. 1C) [25,26] and in protosome eggs described above [1] (Fig. 1). As imaging technology advanced, it was subsequently observed that all the Ca²⁺ oscillations in mouse eggs were also emanating from the vegetal hemisphere [27,28]. At present, the study on the mechanism of fertilization Ca²⁺ signals is the most advanced in mammals (Table 1).

Download English Version:

https://daneshyari.com/en/article/2203465

Download Persian Version:

https://daneshyari.com/article/2203465

<u>Daneshyari.com</u>