

Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

Acid mine drainage: Challenges and opportunities

Geoffrey S. Simate*, Sehliselo Ndlovu

School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P/Bag 3, Wits 2050, Johannesburg, South Africa

ARTICLE INFO

Article history: Received 29 May 2014 Accepted 17 July 2014 Available online 22 July 2014

Keywords:
Acid mine drainage
Heavy metals
Sulphide minerals
Environmental effects
Process integration

T., 4... J. . . 4. . . .

ABSTRACT

Acid mine drainage (AMD) or acid rock drainage (ARD) is considered as one of the main pollutants of water in many countries that have historic or current mining activities. Its generation, release, mobility, and attenuation involves complex processes governed by a combination of physical, chemical, and biological factors. In general, AMD is produced by the oxidative dissolution of sulphide minerals. This paper reviews the current state-of-the-art of AMD. It critically analyses the work performed in recent years on its occurrence, effects (on human health, plant life and aquatic species), and summarizes the remediation approaches taken so far to overcome the problem of AMD. The challenges faced in tackling the remediation of AMD have also been considered. Commercially developed projects that are either in operation, being piloted or under evaluation have also been discussed. Finally, the paper speculates on future directions or opportunities that deserve exploration.

© 2014 Elsevier Ltd. All rights reserved.

Contents

introduction	785
Occurrence of acid mine drainage	786
General overview	
Oxidation of pyrrhotite (Fe $_{(1-x)}$ S)	788
Oxidation of chalcopyrite (CuFeS ₂)	788
Oxidation of arsenopyrite (FeAsS)	788
Oxidation of sphalerite (ZnS) and galena (PbS)	789
Effects of acid mine drainage	789
Human health	789
Effect of heavy metals	789
Effect of low pH	789
Plant life	789
Effect of heavy metals	789
Effect of low pH	789
Aquatic life	790
Effect of heavy metals	790
Effect of low pH	
Control and treatment of acid mine drainage	
Generation of industrially useful materials from acid mine drainage	791
Recovery of metals	792
Selective precipitation	792
Selective adsorption	
Selective ion exchange	793
Recovery of water	
Electrodialysis	794
Membrane distillation	794

^{*} Corresponding author. Tel.: +27 11 717 7570/76 112 6959; fax: +27 11 717 7599. E-mail addresses: simateg@yahoo.com, simateg@gmail.com (G.S. Simate).

Recovery of sulphuric acid	
Simultaneous removal of metals and production of electricity	. 1795
Cyclic electrowinning/precipitation method	. 1795
Other useful products and applications	. 1795
Production of iron pigments	. 1796
Building and construction related materials	. 1796
Adsorbents in industrial wastewater treatment	. 1796
Review of commercially developed projects	. 1796
CSIR ABC (alkali-barium-calcium) process	. 1796
SAVMIN process	. 1796
SPARRO process	. 1797
GYP-CIX process	. 1797
THIOPAQ process	. 1798
The Rhodes BioSURE process	. 1798
TUT MBA (magnesium-barium-alkali) process	. 1798
HiPRO (high pressure reverse osmosis) process	. 1798
EARTH (environmental and remedial technology holdings) ion exchange process	. 1798
Integration of processes and technologies	. 1798
Summary and concluding remarks	. 1799
Disclaimer	. 1800
Acknowledgement	. 1800
References	. 1800

Introduction

The problem of sulphide oxidation and the associated acid mine drainage (AMD) or acid rock drainage (ARD) has been a major focus of research over the last 50 years [1]. The term AMD is commonly used (than ARD) because the process occurs mainly at mining sites. It occurs in both operating and abandoned polymetallic sulphide mining sites [2,3] - in tunnels, mine workings, open pits, waste rock piles, and mill tailings [2-4]. Although the chemistry of AMD generation is straightforward, the final product is a function of the geology of the mining region, presence of microorganisms, temperature and also of the availability of water and oxygen [5]. These factors are highly variable from one region to another, and, for this reason, the prediction, prevention, containment and treatment of AMD must be considered carefully and with great specificity [5]. The causes of AMD are not only limited to the mining industry, but can also occur where sulphide materials are exposed, e.g. in highway and tunnel construction and other deep excavations [6-8]. In other words, any activity that disturbs mineralized materials can lead to AMD. The AMD is a strong acidic wastewater rich in high concentrations of dissolved ferrous and non-ferrous metal sulphates, and salts [9,10] and if AMD is left untreated, it can contaminate ground and surface watercourses, damaging the health of plants, humans, wildlife, and aquatic species [10,11]. Consequently, the development of cost-effective and sustainable remediation solutions for the AMD problem has been the subject of extensive research [12]. However, despite AMD being pinpointed as a looming problem as early as the 1970s, the simple cleaning processes available and the many parties with powerful incentives to act, such as government to non-governmental organizations to mining companies, no single party has produced the required combination of scale, resources and credibility to deal with the problem.

This paper reviews the current state-of-the-art of AMD. It describes the work performed in recent years on its occurrence, effects, and summarizes the control and remediation approaches taken so far to overcome the problem of AMD, the challenges faced and speculates on future directions or opportunities that deserve exploration. Accordingly, the paper is organized as follows: a background of the occurrence of AMD is presented first, followed by its effects on human health, plant life, and aquatic species. The paper then discusses some of the control and remediation strategies followed by a discussion of industrially useful materials

generated from AMD. Commercially developed projects that are either in operation, being piloted or under evaluation have also been discussed. Finally, the paper explores the prospective future opportunities that may be available for treating AMD by integration of various conventional and non-conventional processes.

Occurrence of acid mine drainage

General overview

The main cause of AMD is the oxidation of sulphide minerals (Table 1) such as pyrite (FeS₂) as a result of exposure of these minerals to both oxygen and water [2,13], and microorganisms [14]. Although this process occurs naturally, mining activities accelerate the process of AMD generation because such activities increase the exposure of sulphide minerals to air, water, and microorganisms [15]. Thus, AMD is prominent in both operating and inactive or abandoned mining sites – in underground tunnels and shafts, open pits, waste rock piles, and mill tailings [4]. Though AMD is less important when the mine is in active production because the water tables are kept low by pumping, it is severe in closed and abandoned mines where pumps are turned off resulting in the rebound of water tables [2].

The process of AMD generation is extremely complex since it involves chemical, biological, and electrochemical reactions which vary with environmental conditions [8]. To start with, sulphide minerals in ore deposits are formed under reducing conditions in

Table 1Some important metal sulphides with pyrite and marcasite being the predominant acid producers [7].

Metal sulphide	Chemical formula
Pyrite	FeS ₂
Marcasite	FeS ₂
Pyrrhotite	$Fe_{1-x}S$
Chalcocite	Cu ₂ S
Covelite	CuS
Chalcopyrite	CuFeS ₂
Molybdenite	MoS_2
Millerite	NiS
Galena	PbS
Sphalerite	ZnS
Arsenopyrite	FeAsS

Download English Version:

https://daneshyari.com/en/article/221949

Download Persian Version:

https://daneshyari.com/article/221949

<u>Daneshyari.com</u>