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a b s t r a c t

This research was designed to develop and test an automatic image analysis method (algorithm) to
classify CT images obtained from 1233 carrot (Daucus carota L.) sections (samples), collected during the
2013 and 2014 harvesting seasons. Classification accuracy was evaluated by comparing the classes ob-
tained using eighteen CT images per carrot section to their undesirable fibrous tissue class, based on the
industry-simulated invasive quality assessment (% of fiber). Class-0 represents fibrous-free samples, and
class-1 denotes samples containing fibrous tissue.

After CT image preprocessing, cropping, and segmentation, 3762 grayscale intensity and textural
features were extracted from the eighteen CT images per sample. A 4-fold cross-validation linear
discriminant classifier with a performance accuracy of 87.9% was developed using 95 relevant features,
which were selected using a sequential forward selection algorithm with the Fisher discriminant
objective function. This objective method is accurate in determining the presence of undesirable fibrous
tissue in pre-processed carrots.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Carrot (Daucus carota L.) is an economically important produce
grown around the world, including the United States (Sood et al.,
1993; Nyman, 1994). In 2014, around 322 thousand tons were
produced in the US for the processing/value-added market,
yielding a total revenue of approximately 37.2 million US$ (USDA/
NASS, 2014). In the value-added market, carrots are usually partly
processed, which includes washed, peeled, sorted, sliced or diced
(6.35 mme12.7 mm cubes), and quick frozen so that no, or slight,
additional preparation is required for final use (Rico et al., 2007;
Hodges and Toivonen, 2008). Partially processed carrots are then
integrated into a variety of products, including baby food, mixed
vegetables, and dehydrated soups (Howard and Griffin, 1993;
Burns, 1997).

Quality and safety of fresh and processed agro-food commod-
ities, including carrots, are measured not only by external factors
such as shape, foreign objects presence (Jha et al., 2010), color (Wu
et al., 2014), size, surface blemishes (Jha and Matsuoka, 2002), and
mold, but also by internal quality and safety features, which are

essential for consumer acceptance (Kotwaliwale et al., 2014). Carrot
internal features include the presence of undesirable fibrous tissue
(Donis-Gonz�alez et al., 2015), tough-tissue (McGarry, 1995),
moisture-content (Firtha, 2009), nutrient-content (carotenoids,
ascorbic acid, and calcium) (Liu et al., 2014), and texture (Rastogi
et al., 2008). Donis-Gonz�alez et al. (2015) expressed that fibrous
carrots are undesirable and difficult to detect and eliminate. Fibrous
carrot dices are especially problematic when found in ready-to-eat
infant food, where they might represent a choking hazard (safety
concern).

Currently, noninvasive systems mainly using inline color com-
puter vision techniques are used to determine external quality at-
tributes, such as color, external defects, and shape in fresh and
processed vegetables, nuts, and fruits (Brosnan and Sun, 2004;
Mery and Pedreschi, 2005; Blasco et al., 2007; Gomes and Leta,
2012; Moreda et al., 2012; Donis-Gonz�alez et al., 2013). In addi-
tion, techniques based on near-infrared (NIR), X-ray, computed
tomography (CT), magnetic resonance imaging (MRI), vibration,
sonic and ultrasonic, have also been applied for non-destructive
determination of internal quality attributes of a variety of agricul-
tural and food products (Milczarek et al., 2009; Cubero et al., 2010;
Lorente et al., 2011).

Internal quality attributes, which have been explored in carrots,* Corresponding author.
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include: Texture and sweetness using visible and NIR reflectance
measurements (Belie et al., 2003); nutritionally valuable com-
pounds content (i.e. vitamin C, a-carotene, b-carotene, sucrose,
glucose, and fructose) by applying spectrophotometric sensing
(Zude et al., 2007); and moisture loss by NIR spectroscopy (Kaffka
et al., 1990) as well as hyperspectral imaging (Firtha, 2009). In CT,
the difference in physical density of materials, including those
within fresh and processed agro-food commodities, is visualized by
changes in image grayscale intensity and is expressed in ‘Houns-
field-Units’ (HU) (or ‘CT-number’) (Bushberg et al., 2002; Donis-
Gonz�alez et al., 2012a; Donis-Gonzalez et al., 2012b). Despite
widespread research efforts and off-line application studies,
involving those of carrots, an automatic real-time inline CT in-
spection system for the classification of processing carrots and
others commodities is not commercially available. Because of
recent advances in high-performance computing systems, non-
medical CT applications are gaining attraction. Latest advances
include modern graphical processing unit (GPU) computing capa-
bilities (Pratx and Xing, 2011), high-performance X-ray tubes, new
concepts for high-throughput inline CT inspection systems and
new detector technologies offering real-time imaging including
electron beam CT, equipment cost decreases, extended or contin-
uous operation equipment, and significant reduction in image
reconstruction time (Hampel et al., 2005; Hanke et al., 2008;
Bierberle et al., 2009; Stuke and Brunke, 2010; Donis-Gonz�alez
et al., 2014b). With the aim of studying pre-harvest carrot growth
and the effect of fibrous tissue in fresh carrots, Rosenfeld et al.
(2002) evaluated the pre-harvest growth and development of
carrot roots by means of X-ray CT, with minimal disturbance to
potted carrot plants. Also, Donis-Gonz�alez et al. (2015) used CT
technology to visualize the presence and study the effect of unde-
sirable fibrous tissue in processing carrots, as well as studying
related changes in carrot structural fiber polymers. Images, better
understanding of the presence and impact of undesirable fibrous
tissue can be seen in Donis-Gonz�alez et al. (2015). Previously, using
a CT system as a tool, Donis-Gonz�alez et al. (2012a; 2012b) found a
significant relationship between CT images and chestnut (Castanea
spp.) internal components. Furthermore, an automatic, accurate,
reliable, and objective tool to determine chestnut internal quality
(decayed tissue) using CT images, applicable to an automated
noninvasive inline CT sorting system, was developed by Donis-
Gonz�alez et al. (2014a). However, currently only destructive tech-
niques, off-line monitoring, or random sampling can be reliably
employed at the processing plants with the objective of evaluating
the presence of undesirable fibrous tissue in carrots. Clearly, inva-
sive techniques can’t be applied to all produce and, thus, it is crucial
to develop an in vivo inline nondestructive tool capable of better
detecting carrots containing undesirable fibrous tissue. This will
enable the carrot processing industry to offer a better quality and
safer product, therefore increasing consumer satisfaction and
decreasing industry liability issues.

If CT inline systems were to be developed, little is currently
known about how to efficiently handle and analyze the high
amount of acquired data, while continuously scanning. Pattern
recognition algorithms, which are an important and intrinsic part
of computer vision systems (Duda et al., 2000; Mery and Soto,
2008), offer a mechanism of classifying commodities based on
their quality attributes, and can be applied to CT systems, as seen in
Donis-Gonz�alez et al. (2014a). Comprehensive information con-
cerning statistical pattern recognition techniques can be found in
multiple manuscripts, including Jain et al. (2000), Duda et al.
(2000), Bishop (2007), and Holmstr€om and Koistinen (2010).

Therefore, the objective of this study was to describe the
methodology for developing an automated classification algorithm
to detect the presences of undesirable fibrous tissue in CT images of

processing carrots, which would be suitable for an inline CT in-
spection system.

2. Materials and methods

2.1. Carrot collection and preparation

Steps used to generate the pattern classification algorithm to
categorize internal carrot quality, based on their presence of un-
desirable fibrous tissue using CT images are illustrated in Fig. 1. A
total of 411 fresh carrots (cv. ‘Canada’, a common and highly utilized
cultivar for processing), equal or larger than 180 mm length (collar
to tip), were directly hand harvested from six Michigan commercial
production fields (Oceana county, MI) mid-November 2013 and
2014. Of the carrots, 219 were bolted (premature production of a
seed-head) suspected of containing undesirable fibrous tissue, and
192 were non-bolted, likely fibrous-free. Carrots were randomized,
numbered and manually cleaned with water, with the objective of
removing excess dirt. Immediately after cleaning, samples were
stored at 4 �C. Six days later, CT scans were conducted (Fig. 2).

2.2. In vivo CT imaging scans

CT scans were performed using a GE BrightSpeed®1 RT 16 Elite,
multi-detector CT instrument (General Electric Healthcare, Buck-
inghamshire, United Kingdom) on a polyethylene board
(915 mm � 335 mm� 2.8 mm) placed on the CT scanner table,
containing a maximum of 12 carrots, as seen in Fig. 2a. Scanning
procedure and image output is as described in Donis-Gonz�alez et al.
(2014a). Scanning parameters, which were optimized using the
procedure described in Donis-Gonz�alez et al. (2012a), are sum-
marized in Table 1.

A single scanning of the CT system consists of a block of 3D data
stored as voxels. Voxels (volume elements), have the same in-plane
dimensions as pixels (2D image elements), but also include the slice
thickness (d) dimension (Bushberg et al., 2002). However, the
entire block of data is not acquired at once. Instead, each XY plane
2D CT image slice (XY-plane-slice) is processed as the carrots,
previously arranged in rows and placed on the scanning board, are
passing though the CT scanner. A XY-plane-slice is analogous to a
virtual cross-section of the imaged carrot passing through the CT
scanner. Therefore, the imaging procedure is done one XY-plane-
slice (cross-section) at a time, starting with t1-and ending with
tn-XY-plane-slice. The originally acquired CT XY-plane-slices, con-
taining images from several carrots per row, moving through the Z-
axis (longitudinal direction), are stored in memory using a digital
imaging and communications in medicine (DICOM) standard
format, as observed in Fig. 2b. In the case of CT, the difference in
physical density of materials is visualized by changes in grayscale
image intensity of the DICOM image.

2.3. CT image preprocessing

Image preprocessing (re-slicing, cropping and contrast
enhancement), image visualization, segmentation, feature extrac-
tion, statistical analysis, and the automatic classification/validation
for this study were done in MATLAB (2012a, The MathWorks,
Natrick, MA, USA) (http://www.mathworks.com), and in the lan-
guage and environment for statistical computing software R
(V2.10.0, R Development Core Team, Vienna, Austria) (http://cran.r-
project.org/), using a Macintosh environment on a Lion operating

1 BrightSpeed® and Volara® are registered Trademarks of General Electric
Healthcare.
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