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a b s t r a c t

The possibility to reconstruct food microstructure by limited morphological information has funda-
mental importance for theoretical and practical applications. We implemented the simulated annealing
method proposed by Yeong and Torquato (1998) for reconstructing bread structure through the infor-
mation contained into the lineal-path distribution function, L(r), and two-point correlation function, S2(r).
The method enabled the evolution of two-phase random image toward bread structure. When using the
information of lineal-path distribution function, the generated images well captured the main morpho-
logical features of bread, although several deviations still existed. This was in accordance with the sig-
nificant differences between the original and reconstructed images as measured by two-point correlation
function. By hybrid reconstruction, based on both correlation functions, a better reconstruction in terms
of both number and size of pores was obtained. In the future the use of more several statistical corre-
lation functions could enable further improvement in reconstruction of bread microstructure.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneous materials are ubiquitous both in nature and in
synthetic field. They are composed by different materials or phases
or also by the same materials existing in different states. Examples
are biological tissues, composites, powders, soil, sandstone, alloys,
etc. (Lu and Torquato, 1992a; Jiao et al., 2009). However, food may
be clearly classified as heterogeneous materials because consisting
in different phases such as fat globules, meat elements, fiber, starch
granules, sugars, etc.. More specifically, all food may be considered
as two-phase random systems characterized from a voids phase
(the pores) and a solid phase (solid matrix). Given these assump-
tions, bread structure is an excellent example of a two-phase
random system composed from pores embedded in the crumb
which produce the 3D macroscopic structure (i.e. the crumb
texture) worldwide appreciated from the consumers. More spe-
cifically, it is widely reported that crumb texture governs the
sensorial properties of bread (Pyler, 1988; Baardseth et al., 2000;
Scanlon and Zghal, 2001). The cellular structure affects several
quality indexes such as the volume of loaf (Zghal et al., 1999), its
resilience (Ponte and Ovadia, 1996), the texture during the cooking

in oven (Kamman, 1970) as well as the color of crumb that is
influenced by the degree of fineness and homogeneity of crumb
grain (Gonzales-Barron and Butler, 2008). However not only bread
may be considered as two-phase random system but also the
sausages which are characterized by fat globules embedded into
the minced meat. Other examples are cheeses, ice-cream, coffee
beans, roasted coffee cake, beef, fruit and vegetables, to name only
few. Recently, the importance of understanding of food micro-
structure and its relationships with the physical, nutritional and
sensorial attributes has been proved from several authors (Van Het
Hoff et al., 2000; Aguilera, 2005; Datta, 2007; Parada and Aguilera,
2007). The quantitative and qualitative characterization of micro-
structure is of crucial importance for both scientific and practical
applications, indeed it has influence on conductivity, permeability,
mechanical and electromagnetic properties, heat and mass trans-
fers, etc. (Lee and Torquato, 1989; Lu and Torquato, 1992a, b;
Torquato and Lu, 1993; Russ, 2005; Baniassadi et al., 2012; Li
et al., 2012). In the last decade, the interest of researchers on the
characterization of microstructure of heterogeneous materials
emerged and several morphological descriptors were proposed.
Among these, Torquato and co-authors developed a wide series of
statistical correlation functions (SCF) able to extract important
microstructure information from two-phase random systems (Lu
and Torquato, 1992a, 1993; Torquato, 2002; Jiao et al., 2009). An
example is given by the n-point correlation function Sn (x1, x2,… xn),
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which is the probability to find n points at position x1, x2,… xn all in
the same phase of the system (void or solid phase) (Coker and
Torquato, 1995) while the lineal-path distribution function, Li(z),
indicates the probability that a segment of length z falls completely
in the phase i (Torquato, 2002; Singh et al., 2008). L(z) contains
important connectedness informations and gives some indications
on the stereology of the system. Other correlation functions such as
chord-length distribution function, p(z), pore size distribution func-
tion, P(z), two-point cluster function, C2(x1, x2), have been developed
and validated for several digitized model systems (identical hard
disks, identical overlapping disks, periodic rods, Debye overlapping
disks, etc.) and for materials such as sandstone, magnetic gels,
Boron modified Ti-alloys (Rintoul et al., 1996; Chan and
Govindaraju, 2004; Singh et al., 2008). In addition, Derossi et al.
(2012, 2013a, 2013b, 2016) used statistical correlation functions
to obtain interesting information on the microstructure of bread
and dry-sausages. However, it is worth noting that the statistical
characterization of food microstructure is not the only issue. The
inverse problem of the reconstruction of food microstructure, from
limited statistical information, is still a challenge onwhich only few
experiments have been performed. A precise reconstruction, could
provide a non-destructive and relatively low-cost method to esti-
mate the macroscopic properties of food. Yeong and Torquato
(1998) proposed an approach to reconstruct random media by
using a stochastic method, also known as Y-T procedure. By this
method, an initial two-phase random system progressively evolves
with the aim to make the statistical correlation functions as much
as possible close at those of the original image. Studies performed
on digitized model systems, clearly proved as the method enables
to obtain a good reconstruction of two-phase random systems us-
ing the information contained in some statistical correlation func-
tions (Rintoul and Torquato, 1997; Capek et al., 2009; Li et al., 2012;
Baniassadi et al., 2012; Gerke et al., 2014). In a recent study, by using
the information of the lineal-path distribution functions (LPFs), we
reported the possibility to reconstruct the salient features of bread
microstructure, although the reconstructed images showed some
deviations from the reference structure (Derossi et al., 2014).

In this paper we extended these preliminary results by recon-
structing bread structure using several statistical correlation func-
tions. More specifically, the aim of this paper was to implement the
Y-T method for obtaining a better reconstruction of bread structure
by using the information contained into directional lineal-path
distribution function, L(r), and two-point correlation function, S2(r).

2. Material and methods

2.1. Bread and image acquisition

Bread loaves were purchased locally and manually cut to obtain
slices with a thickness of 1 cm. A 2D image was acquired by using a
flat scan equipped with a black box to guarantee constant lightness
conditions. A resolution of 600 dpi ¼ 0.004233 mm/pixel was used
and the image was saved in TIFF format. A square region of interest
(ROI) of 400 � 400 pixels was chosen for the reconstruction on the
basis of preliminary tests, in which for bigger ROI no differences in
terms of L(r) and S2(R) were observed. Binary images were obtained
using Otsu's method (Sezgin and Sankur, 2004) and the functions
the “rgb2gray” and “graytresh” availables in the image analysis
Toolbox of Matlab R2012b (Mathworks, USA). Also, the lineal-path
distribution function, L(r) (LPF), in x and y directions, and the two-
point correlation function, S2(r), (TPCL) were extracted from the 2D
images by using the algorithms previously developed in Matlab
(Mathworks, USA) (Derossi et al., 2012). Particularly, LPF in x and y
direction were extracted separately and, as single statistical corre-
lation functions, used for the reconstruction procedure, while TPCL

were extracted directly in orthogonal directions. Finally, both the
statistical correlation functions were extracted from the void phase
of bread (i.e. the pores).

2.2. Reconstruction procedure

Let us consider the reconstruction procedure of a general two-
phase random system carried out by using the microstructure in-
formation provided from a general statistical correlation function,
f(r). Also, let us to define the correlation function of the phase j
(equal to 1 or 2) of our “reference” systems as f0(r) and the lineal-
path function of the “reconstructed model” system as fs(r) which
will evolve toward f0(r). Before reconstruction the “reconstructed
model” is a two-phase random system having the same porosity
fraction of the reference system. Once the fs(r) is calculated we can
define a new variable E as follows:

E ¼
X
i

biðfsðriÞ � f0ðriÞÞ2 (1)

Where E may be considered as the energy in the simulated
annealing method, bi is an arbitrary weight of the function f(r) and
ri is the distance between two points of the system. To allow the
digitized model system to evolve toward the reference system we
have the aim to minimize the value of E which is a property that
decreases when the difference between the two correlation func-
tions reduce. More precisely, once the first value of E0 is calculated,
an interchange of the states of two pixels falling in different phases
is performed enabling to preserve the volume fraction of both
phases during the reconstruction. Then a new value of energy, E1, is
calculated as well as the difference of energy between the two
different states DE ¼ E1 e E0. The interchange between the two
pixels is accepted via Metropolis algorithm:

pðDEÞ ¼

8><
>:

1; DE � 0

exp
�
�DE=T

�
; DE>0 (2)

Where p(D E) is the probability of accepting an interchange, T is
the temperature of the system which progressively decreases as a
function of the number of reconstruction steps according to a
specific cooling schedule. Particularly, the cooling schedule governs
the rate of the temperature changes determining how the systems
evolve toward the desired state, without fall in the local minimum
energy. In our case, after preliminary experiments, the cooling
schedule proposed from Gerke et al. (2014) was used:

TðkÞ ¼ lðk�1Þ*T0 (3)

Where k is the reconstruction step, l is a value close to unit and T0 is
the initial temperature. Particularly, in our experiments
l ¼ 0.999,999 and T0 ¼ 0.0001 were used.

Reconstruction procedure was carried out until the value of
energy becomes less than a small tolerance or when a large number
(~20.000) of consecutive unsuccessful interchanges occurred
(equilibrium condition). For instance, by considering the use of the
only lineal-path function extracted from the void phase both in
vertical (LPF90) and horizontal (LPF0) directions, Eq. (1) becomes:

E ¼
X
q

X
j

X
t

h
LPFðj;tÞs ðriÞ � LPFðj;tÞ0 ðriÞ

i
(4)

Where q is the number of LPFs extracted in different directions,
bj,t, are the weights of LPFs in each direction and ri is the length of a
segment of 1, 2, 3 … ….i pixels. An algorithm able to carry out the
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