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a b s t r a c t

Enhanced puff-pastry traits are important for competitive product development. We study the concur-
rent screening and optimization of four puff-pastry product characteristics: (1) an aggregate sensory per-
formance score, (2) the physical height, (3) the pack weight and (4) the moisture content. The choice of
the investigated properties is novel because it blends two static (dough) characteristics with two sus-
pected transient (baked dough) responses. Four controlling factors were modulated directly on a modern
production line: (1) the water quantity, the margarine temperature, the kneading time, and the lamina-
tion folding number. To allow exploring potentially non-linear response tendencies, data has been col-
lected using design of experiments methods. A Taguchi-type orthogonal array (L9(34) OA) was
implemented to program the experimental recipes. A new robust and intelligent processor is presented
to decipher those effects that synchronously regulate the four selected responses and their respective
optimal settings. Smart sampling is used to consolidate various sources of product/process uncertainties
by deploying the effect-ranking capabilities of the general-regression neural networks. Nonparametric
analysis furnishes the significance of the stochastic hierarchy of the examined effects. This research
accentuates the anticipated messiness of the collected datasets and the complexity in handling the mul-
tiple types of blended information. The number of laminations is found to be the primary determinant of
controlling overall product quality.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern food-processing operations are continuously primed to
offer competitive brand-lines by creating and fusing knowledge
channeled from three major information streams. When product,
process and consumer behaviors are intelligently captured and
harmoniously equilibrated, the prospective customer base is
bound to be enthralled. State-of-the-art product development
requires a strong involvement of data-driven strategies that would
permit gaining insight about what it is achievable and how to man-
ufacture it (Singh and Heldman, 2013). Specifically, Taguchi meth-
ods have broadened the knowledge discovery tactics in food
engineering (Besseris, 2009, 2014b). Taguchi methods originally
flourishing in industrial projects for massive operations were
geared toward enhancing quality and functionality issues in very
diverse end-product lines (Taguchi et al., 2000, 2004). Key goal
was to learn about a process and/or a product quickly relying on
factual evidence which would guide next the amelioration journey
while simultaneously minimizing the costs of the investigation
itself. Taguchi methods became particularly popular because cost

cutting was insidiously effectuated by conducting product/process
screening and parameter optimization in a single step. This strat-
egy also led to reducing enormously the cycle time of experimen-
tation, thus immensely accelerating the decision-making process
for product development/improvement. But screening is also an
optimization activity since it intends to filter out any weak effects
from the initial group of the examined controlling factors
(Box et al., 2005). So screening eventually minimizes the original
profiling objectives. Nevertheless, it is rare to encounter an
acknowledgement in recent literature about the practical value of
Taguchi methods in promoting the intermingling of the dual opti-
mization aims through the concurrent exploitation of a single data-
set to cope with both purposes (Besseris, 2013a,b). Furthermore,
the greatest asset of Taguchi methods stems from the fact that they
are directly adaptable to large-scale operations. Consequently, the
trial volume needs to be limited and rapidly completed because
experimentation detracts the production schedule by wiping out
precious machinery availability. To drastically curtail the trial vol-
ume, Taguchi methods recommend the implementation of the
orthogonal array (OA) designs. The OA-based samplers standardize
the structured and cogent organization of experiments by
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exhibiting a high sampling efficiency which is engrained in all frac-
tional factorial designs (FFDs) (Box et al., 2005).

Fractional factorial designs have been fruitful in screening the
demanding rice flour extrusion (Guha et al., 2003). Direct applica-
tions of the regular Taguchi methodology on food engineering have
been published mainly with respect to optimally conditioning var-
ious phenomena such as the pumpkin peeling (Emadi et al., 2007,
2008), the citric acid electrodialysis (Nikbakht et al., 2007), the
microwave frying of potato slices (Oztop et al., 2007), the
fluidized-bed drying of bird’s eye chilli (Tasirin et al., 2007), the
osmotic dehydration of yam bean (Abud-Archila et al., 2008), the
enzymatic acidolysis of sunflower oil (Carrin and Crapiste, 2008),
the blending of unifloral honeys (Dimou et al., 2009), and the free
bi-axial rotary processing of canned suspensions (Ramaswamy and
Dwivedi, 2011). Taguchi-type modulation of culture conditions
involve examples from regulating the Monascus spp. culture
(Chung et al., 2007), the lactic-acid media (Bhatt and Srivastava,
2008), and the culture preparation for tannase production (Das
Mohapatra et al., 2009). The combined influence of mixture and
processing variables to a group of rheological and textural charac-
teristics has been investigated in thick syrup (Molina-Rubio et al.,
2010). Multiple quality properties of an infant formula have been
tested with the Taguchi method to adjust several pneumatic con-
veying parameters (Hanley et al., 2011). Extraction processes are
suitable for optimization as exemplified by the cases of isolating
triterpenoid saponins from Ganoderma atrum (Chen et al., 2007),
the calcium removal in tuning a weak-cation exchange resin
(Coca et al., 2010), the microwave extraction of Chenopodium qui-
noa wild (Gianna et al., 2012), the enzyme-assisted maceration of
waste carrot-seed oil (Śmigielski et al., 2014) and in supercritical
fluid extraction (Sharif et al., 2014).

Baking is a food processing activity that receives unabated
attention (Cauvain and Young, 2006; Heenan et al., 2009; Purlis,
2011; Pouliou and Besseris, 2013). Such interest emanates from
the multifaceted interplay of polymer-rheological phenomena that
govern product properties that shape anything from the product
quality status to shelf-life performance (Dobraszczyk and
Morgenstern, 2003; Dobraszczyk, 2004; Caballero et al., 2007).
The stochastic modeling of baked products is emphatically com-
plex marred by a barrage of uncertainty sources (Rousu et al.,
2003; Farid, 2010; Feyissa et al., 2012). In this work, we propose
a hybrid intelligent technique to improve puff-pastry sensory per-
formance while attempting a shelf-life requirement extension
without relinquishing the target conformance of some key physical
characteristics. Puff pastries are baked dough preparations that are
enjoyed by many cultures around the world. Puff pastries are dis-
tinct for their multiple sandwiching of margarine and dough layers
– by the lamination process of folding and rolling out – that makes
their resulting flakiness so appealing to consumers. However, work
on manipulating simultaneously puff-pastry key controlling
parameters such as the kneading time, the lamination level, the
added water quantity and the margarine temperature are rather
absent in the modern literature (Qia et al., 2008; Wang et al.,
2013). The combination of the stated controlling factors while
appearing restricting, nevertheless, they implicate the important
rheological aspect of the gluten-polymer structure in terminal pro-
duct transient phenomena (Sliwinskia et al., 2004; Yi and Kerr,
2009).

The unique experimental logistics and the novel multi-response
multi-factorial modeling developments of the highlighted
puff-pastry case study will be greatly elucidated. A non-linear
Taguchi-type OA-sampler programs the data collection for tracking

Nomenclature

DOE design of experiments
dmij absolute difference of mij from Tms (i = 1, 2, . . ., r; j = 1, 2,

. . ., 9)
dwij absolute difference of wij from Tws (i = 1, 2, . . ., r; j = 1, 2,

. . ., 9)
GRNN general regression neural networks
FFD fractional factorial designs
k superscript for temporal indexing of responses, k = 4, 7,

15, 26 days
m moisture content (%)
Mi moisture content vector at the ith replicate (i = 1, 2, . . .,

r)
mij moisture content vector elements at the ith replicate

and jth recipe (i = 1, 2, . . ., r; j = 1, 2, . . ., 9)
MRj master response at the jth recipe (j = 1, 2, . . ., 9)
Nf lamination folding number
NN neural networks
OA orthogonal array
PH physical height (cm)
PHk

i PH vector on the kth day and ith replicate (i = 1, 2, . . ., r)
phij

k PH vector elements on the kth day, ith replicate (i = 1, 2,
. . ., r) and jth recipe (j = 1, 2, . . ., 9)

PHMj median value of phij
k across all replicates and time zones

at the jth recipe (j = 1, 2, . . ., 9)
PHIQRj interquartile range value of phij

k across all replicates and
time zones at the jth recipe (j = 1, 2, . . ., 9)

Qw water quantity (l)
r number of replicates
rdmij rank-ordered dmij (i = 1, 2, . . ., r; j = 1, 2, . . ., 9)
rdwij rank-ordered dwij (i = 1, 2, . . ., r; j = 1, 2, . . ., 9)

rmj rank-ordered srdmj (j = 1, 2, . . ., 9)
rwj rank-ordered srdwj (j = 1, 2, . . ., 9)
rPHMj rank-ordered PHMj (j = 1, 2, . . ., 9)
rPHIQRj rank-ordered PHIQRj (j = 1, 2, . . ., 9)
rSPpj rank-ordered SPpj (j = 1, 2, . . ., 9)
rSPCIj rank-ordered SPCIj (j = 1, 2, . . ., 9)
SP aggregate sensory score
SPk

i SP vector on the kth day and ith replicate (i = 1, 2, . . ., r)
spk

ij SP vector elements on the kth day, ith replicate (i = 1, 2,
. . ., r) and jth recipe (j = 1, 2, . . ., 9)

SPpj prediction of the SP vector elements on the 26th day for
the jth recipe (j = 1, 2, . . ., 9)

SPCIj prediction of the 95%-confidence interval SP vector ele-
ments on the 26th day for the jth recipe (j = 1, 2, . . ., 9)

srdmj sum of rdmij on i (j = 1, 2, . . ., 9)
srdwj sum of rdwij on i (j = 1, 2, . . ., 9)
ssrSPj sum of squared ranks of SPpj and SPCIj

ssrPHj sum of squared ranks of rPHMj and rPHIQRj

sSPj rank-ordered ssrSPj

sPHj rank-ordered ssrPHj

Tk kneading time (min)
Tm margarine temperature (�C)
Tms specification target for the moisture content character-

istic (%)
Tws specification target for the weight characteristic (g)
w weight response (g)
Wi weight vector at the ith replicate (i = 1, 2, . . ., r)
wij weight vector elements at the ith replicate and jth re-

cipe (i = 1, 2, . . ., r; j = 1, 2, . . ., 9)

G.J. Besseris / Journal of Food Engineering 164 (2015) 40–54 41



Download English Version:

https://daneshyari.com/en/article/222849

Download Persian Version:

https://daneshyari.com/article/222849

Daneshyari.com

https://daneshyari.com/en/article/222849
https://daneshyari.com/article/222849
https://daneshyari.com

