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a b s t r a c t

The fundamental science relating key physical and functional properties of milk powder to plant operating
conditions is complex and largely unknown. Consequently this paper takes a data-driven approach to
relate the routinely measured plant conditions to one vital function property known as sediment in an
industrial-scale powder plant. Data from four consecutive production seasons was examined, and linear
regression models based on a chosen set of processing variables were used to predict the sediment values.
The average prediction error was well within the range of the uncertainty of the laboratory test. The models
could be used to predict the effect of each individual plant variable on the sediment values which could be
beneficial in quality optimisation. In addition the choice of the training data set used to compute regression
coefficients was studied and the resultant regression models were compared to alternative PLS models
built on the same data.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Milk powders are widely used in the food industry as in bakery
products, soups and sauces, ready meals, milk based beverages,
confectioneries, milk chocolates, yoghurts and cheeses (Oldfield
and Singh, 2005; Sharma et al., 2012). A key motivation to trans-
form liquid milk into powder is to increase shelf-life and reduce
transportation costs. Milk powders also possess attractive physical
and functional properties. The physical properties include powder
structure, particle size distribution, flowability and bulk density
while the functional properties describe how the powder behaves
for the customer and include reconstitution properties, heat stabil-
ity and foaming properties.

The functional properties depend on the raw milk composition,
the degree of standardization, the processing and subsequent stor-
age conditions, and how the powder is used in the particular food
system (Oldfield and Singh, 2005). Since some of the functional
properties can be built-into the powder, there are economical
interests in manufacturing such tailor-made powders due to the
added value (Sharma et al., 2012).

The functional properties are usually tested by sampling the
final product some time after production. However this a posteriori

testing strategy runs the risk that an out-of-specification campaign
results in considerable material being downgraded or disposed
leading to significant economical losses. Furthermore, because
the science currently available to explain the relations between
processing conditions and functional properties of powder is
immature, simply knowing that a campaign is out of spec does
not help to make changes in the production.

As a solution, a data-driven approach can be used to (1) estab-
lish relations between the real-time measurable processing condi-
tions and offline tested functional properties, (2) to predict the
functional properties (in some cases in real-time) based on plant
data, and (3) estimate the variance caused by each processing con-
dition. This is sometimes known as process analytical technology
(PAT) or real-time quality control (RTQ) (Bakeev, 2005; FDA,
2004; Munir et al., 2014; Munson et al., 2006; Swarbrick, 2007;
van den Berg et al., 2013).

The main objective of this study was to investigate strategies to
be able to predict a key functional property using only operating
data measured routinely from the plant thereby making the real-
time quality control possible and avoiding the necessity of a time
consuming, and somewhat subjective offline laboratory analysis.
The functional test is one of the many sediment tests which quan-
tify the volume of the undissolved milk (Anon, 2014). For instant
whole milk powder, the less sediment, the better, although the
upper acceptable limit depends on the specific product and the
customer’s requirements (Sharma et al., 2012).
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Previously, it has been found that high evaporator preheat tem-
peratures, long holding times and high values of total solids
increase the sediment values (Oldfield et al., 2000). Moreover, it
has been found that the milk homogenization settings have only
marginal effect and that lecithin addition decreases sediments
(Oldfield et al., 2000). Furthermore, there seems to be an optimum
value for the concentrate temperature which, however, may be
plant-dependent (Oldfield et al., 2000; Oldfield and Singh, 2005).
Regarding the composition, milk with a low fat content
(1.5–26%) is preferable than high (>26%) (Kelly, 1998; Oldfield
and Singh, 2005) while varying amounts of protein (24.9–30.8%)
have only a marginal influence on the sediment results (Kelly,
1998).

Generally speaking, the main contribution of this paper is to
describe a data-driven approach that can predict end-point proper-
ties of industrial products based on real-time manufacturing data
and estimate how much variation in the properties is caused by
each plant variable. More specifically, this approach is here tested
and evaluated by predicting sediment properties of milk powder
with the help of real-time manufacturing data from an
industrial-scale milk powder plant. The predictions were regressed
using typical operating variables that are routinely logged, and
approximating the joint distribution as Gaussian. Moreover, it is
suggested how the nominal values of the operating variables could
be adjusted in order to improve (lower) the sediment values.

2. Theory of conditional probability distributions

The aim of this work is to predict the scalar offline measured
sediment values, s, given a vector of possibly correlated m routine
plant observations, D ¼def ½d1; d2; . . . ; dm�T. In this paper, the joint dis-
tribution of the plant observations and laboratory measurements is
approximated as Gaussian (normal). Thus, the model predictions
are linear functions of the plant observations, and easily imple-
mented in practice.

The mean and standard deviation of probability distribution of
the sediments can be predicted if correlated information on pro-
cessing variables is available. This information can be incorporated
by conditioning the sediment distribution with the process data.
Here, the Gaussian approximations and the theory how to calculate
conditional probability distributions (CPDs) are briefly described.

The following notation is used in this section: vectors and
matrices are denoted upright bold. The mean is denoted by a bar,
�z, and the model prediction by a hat, ŝ.

To start, the observation s and the vector of plant data D are
concatenated to get the augmented vector

z ¼
s

D

� �
: ð1Þ

The joint-normal approximation of s and D has mean value �z and
covariance matrix P

�z ¼
�s
�D;

� �
ð2Þ

P ¼
Ps PsD

PDs PD

� �
: ð3Þ

The joint-probability distribution is of the form

pðs;DÞ ¼ pðzÞ / exp �1
2
ðz� �zÞT P�1 ðz� �zÞ

� �
; ð4Þ

and the inverse of the joint-covariance matrix can be partitioned as

P�1 ¼def B ¼
B11 B12

B21 B22

� �
; ð5Þ

with dimensions B11 2 R1�1;B12 ¼ BT
21 2 R1�m and B22 2 Rm�m.

The joint-probability distribution can be written as

pðs;DÞ ¼ pðsjDÞpðDÞ; ð6Þ

where pðsjDÞ is the conditional probability distribution of s given D
and pðDÞ is the probability distribution of D. The prediction of sed-
iments is based on utilizing the above mentioned conditional prob-
ability distribution. It can be written in the form (Eaton, 2007),

pðsjDÞ / exp �1
2
ðs� �s�jDÞTP�1

�jDðs� �s�jDÞ
� �

; ð7Þ

where

�s�jD ¼ �s� B�1
11 B12ðD� �DÞ; ð8Þ

P�jD ¼ B�1
11 ¼

1
B11

: ð9Þ

This means that the most probable outcome of the sediment test
when the processing data is known is given by (8) with variance
(standard deviation squared) given by (9). The notation for the pre-
dicted sediment is ŝ ¼ �s�jD and the corresponding standard deviation
r ¼ 1=

ffiffiffiffiffiffiffi
B11
p

. For example, if the plant is operated with the nominal
operating conditions �D, it would yield sediment result ŝ ¼ �s. Outside
these conditions, the predicted sediment value is corrected by a
value proportional to the difference ðD� �DÞ.

3. Materials and methods

3.1. Standard powder sediment tests

In this study, the stability of instant whole milk powder was the
primary focus and it was quantified by a standard offline labora-
tory sediment measurement test. The testing procedure follows
(Anon, 2014) which in turn is derived from Anon (1977). The exact
nature of the test depends on the customer’s requirements and for
this specific industrial application are proprietary. However all the
sediment tests follow the same basic procedure where a measured
powder sample is mixed in controlled conditions in water (or other
customer-specific solvents), and the resultant undissolved material
is quantified. While the test is reasonably free from any operator
subjectiveness, compared to other powder functional tests, the
results tend to be severely quantified (see Fig. 5 for an example).

Due to confidentiality restrictions, the sediment values pre-
sented in this work have been normalised. Such normalisation does
not have an effect on the method itself.

Sediment values from four consecutive production seasons con-
sisting of 339, 300, 273 and 284 measured samples formed the
basis for this work. Results that were further than 3.5 standard
deviations away from the mean value were considered outliers
and removed from the data set prior to processing.

Fig. 1 shows the histograms of the normalised sediment values
for each production season and overlayed is the approximating
Gaussian distributions. In addition, the average and standard devi-
ation are noted for each season. It is immediately evident that sea-
sons 1 and 2 are similar, as are seasons 3 and 4. The first two
seasons have slightly lower sediment values than the latter, and
the Gaussian approximation fit is better for seasons 3 and 4. This
indicates that there has been operational changes between seasons
2 and 3.

3.2. Plant overview and manufacturing data

An overview of the plant layout and the different manufacturing
stages are shown in Fig. 2. The raw milk from the farms is stored in
mixing tanks (or silos) before passing through the preheating stage
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