Journal of Food Engineering 146 (2015) 53-61

journal homepage: www.elsevier.com/locate/jfoodeng

"

Contents lists available at ScienceDirect journal of
food engineering

Journal of Food Engineering

A geometrical interpretation of large amplitude oscillatory shear (LAOS)
in application to fresh food foams

Pawel Ptaszek *

@ CrossMark

Agriculture University in Krakow, Faculty of Food Technology, Department of Engineering and Machinery for Food Industry, ul. Balicka 122, 30-149 Krakéw, Poland

ARTICLE INFO

ABSTRACT

Article history:

Received 16 April 2014

Received in revised form 7 August 2014
Accepted 27 August 2014

Available online 10 September 2014

Keywords:

Foam

Large amplitude oscillatory shear (LAOS)
Chebyshev transform

Protein

Hydrocolloids

In this research, we studied the rheological properties of wet food foams, consisting of egg white protein,
inulin and xanthan gum. The rheological analysis was carried out using the large amplitude oscillatory
shear (LAOS) technique. For the obtained results, we constructed two types of Lissajous figures in defor-
mation/stress and shear rate/stress coordinate systems. A geometrical decomposition of the obtained fig-
ures was performed, which allowed the isolation of stress values for nonlinear pure elastic and pure
viscous properties accordingly. With the use of the Fast Chebyshev Transformation (FCT) analysis, we
were able to obtain the values of the Chebyshev coefficients. The knowledge of the elastic and viscous
Chebyshev coefficients allowed for the interpretation, with high resolution, of nonlinear rheological prop-
erties of the obtained foams. It was found that supplementation with inulin stabilizes the structure of a
foam based on egg white protein only. Supplementation with xanthan gum, however, increases the ten-
dency towards flow.

Lissajous pattern
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1. Introduction

Foams in food are one of the most often-occurring dispersion
systems (Campbell and Mougeot, 1999; Miyazaki et al., 2006;
Balerin et al., 2007). Thermodynamically, foam is a metastable sys-
tem (Sollich et al., 1997; Sollich, 1998) with a natural tendency
towards disintegration into liquid and gas phases. This phenome-
non can be prevented by the usage of appropriate additives, which
can be divided into two groups. The first comprises substances
forming a suitable layer at the liquid-gas interface and thereby
preventing the coalescence of gas bubbles (Prins, 1988; Marze
et al., 2009). The second group comprises polysaccharides, which
increase the viscosity of the continuous phase and significantly
limit the gas bubbles’ mobility; hence, they inhibit the bubble
aggregation and prevent the degradation of the foam (Prins,
1988; Balerin et al., 2007).

One of the most frequently used polysaccharides in the food
industry is Xanthan gum (Morris, 2006; Palaniraj and Jayaraman,
2011). Recently, inulin has also become quite popular, due to its
application possibilities (Franck, 2006). Inulin is a polysaccharide
(oligosaccharide) of plant origin, mostly extracted from bulbs,
rootstocks and roots of chicory, Jerusalem artichoke and dahlia
(Franck, 2006).
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The rheological properties of foams stabilized with polysaccha-
rides are quite diverse; they exhibit a wide spectrum of behaviors
ranging from simple Newtonian viscosity to elastoviscoplastic phe-
nomena (Rouyer et al., 2005; Ptaszek, 2013; Zmudzifiski et al.,
2014). The use of polysaccharides as foam-stabilizing factors
allows for flexible shaping of the foam’s mechanical properties.
This is particularly applicable for fresh wet foams, which are sub-
ject to further processing, such as pumping or forming into ade-
quate shapes. All of these technological processes are based on
subjecting the foam to shear flow.

Most processes occurring during the flow of food are of nonlin-
ear nature. For fluids not exhibiting any elastic properties, the non-
linearities can be characterized as deviations from the Newton’s
rule. Simple deviations can be described by Ostwald-de Waele type
equations (t = k™). More complex deviations are typical for food
fluids, whose viscosity depends on the shear rate and shear time
values. In this case, the specification of rheological properties
requires application of one of the structural theories, as well as a
specific fluid state equation (Ptaszek, 2012). A separate group of
food systems comprises viscoelastic systems, such as biopolymer
solutions, dough, and starch pastes, which can be in either a liquid
or solid form. Thus far the research on these systems has been con-
ducted predominantly within the linear viscoelasticity range. The
results of these studies provide information on relaxation or retar-
dation phenomena occurring in the studied materials (Ferry, 1980).
There are predominantly two types of experiments carried out,
either within the time or the frequency domain. For the frequency
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domain, two types of experiments are conducted: the function of
the strain amplitude (y) or stress (t) (at constant frequency), or
the function of frequency (at constant strain amplitude or stress
amplitude). Recently there is much interest in research methods
that expand the possibilities of classical studies within the fre-
quency domain. These methods are called large amplitude oscilla-
tory shear (LAOS) and Fourier Transform Rheology (FTR) (Hyun
et al., 2011) and both subject the material to cyclic deformations
(sinusoidally variable in time) with suitably high amplitude (y):

7(t) = Yo sin(at) (1)

In nonlinear conditions, the material’s response can be esti-
mated with high accuracy by utilizing the following harmonic
function:

(6. 7) = Yo+ Y [Gol, 7o) - SIN(NOE) + Gy (@, 7p) - cos(neot)]
n:odd
(2)

In the case of small strains there is only one harmonic present
and, hence, G’y and G”; become real (G') and imaginary (G”) parts
of the complex dynamic modulus (G* = G’ +iG"), well known from
studies of linear viscoelasticity.

The analysis of the obtained function Eq. (2) requires the use of
extended harmonic analysis based on Fourier transform, as well as
a description utilizing the phase plane (analysis of Lissajous fig-
ures) (Hyun et al.,, 2011). As a result, new rheological parameters
are obtained, describing the material’s behavior within the nonlin-
ear range of deformations or stress. These parameters can be
strictly interpreted physically and allow the prediction of the rhe-
ological properties of the studied materials, hence facilitating the
creation of new food products and industrial plants. Broadly
defined mechanical properties of food, within the nonlinear area,
also play an important role in modeling the behavior of the product
during consumption in the oral cavity.

The analysis based on 3D Lissajous figures (Ewoldt and
Mckinley, 2010) deserves particular attention. Such figures are
built within a 3D coordinate system of strain/shear rate/stress.
The curve in shear rate-stress plain can be obtained by differenti-
ating the forcing function (Eq. (1)). It means that the analysis of 3D
Lissajous figures requires the recording of the forcing function
(strain) and the response of the material. The obtained closed curve
represents both elastic and viscous properties of the studied sys-
tem. This figure can be split into two figures in 2D coordinates
(Fig. 1a): deformation/stress and shear rate/stress. Whereas the
first figure describes the elastic properties of the system, the sec-
ond figure describes its viscous properties. The described proce-
dure for dividing into two Lissajous figures stems from the lack
of possibility to easily differentiate the resulting signal into parts,
that would describe either purely the elastic behavior or the vis-
cous behavior. It is impossible to clearly distinguish the factors
describing the storage of mechanical energy (G') and the dissipa-
tion of the energy (G”), as is the case when applying the small
amplitude oscillatory shear (SAOS) technique. This is due to the
fact that the response of the material (Eq. (2)) contains higher har-
monics responsible for the nonlinear character of the material.

A direct application of FTR methods merely allows determining
the degree of nonlinearity in the material’s response; it does not
allow one to consider the overall impact of elastic and viscous parts
on the evaluation of the observed rheological occurrences (Klein
et al., 2007; Hyun and Wilhelm, 2009). Moreover, FTR methods
allow the reconstruction of a time series using individual harmon-
ics and their phases (Hyun et al., 2011). The reconstructed time
series is free of noise; therefore FTR can be used as a highly effec-
tive filtration method for experiments containing noise levels.

One of the possible methods, which can be applied in the anal-
ysis of the above cases, is the geometrical decomposition of the 2D
Lissajous figures presented by Cho et al. (2005). According to the
method’s premise, stress (t) can be subjected to decomposition
as expressed by the equation:

T(X,y) _ T(th) B T(_XMV) + T(Xay) — T(X7 _y)

2 2
where x =7, y = 7/w; the T'(x;y0,m) value stands for elastic stress,
and the 1"(y; o, ) value corresponds to viscous stress. This proce-
dure can be summarized as the division of the Lissajous figure into
four parts: 7(x,y), ©(x,—y) and t(—x,—y), ©(x,—y). The dividing oper-
ation is possible only when the figure is closed. The values 1" and
t”are arrived at by subtracting appropriate parts of the Lissajous fig-
ure, according to the Eq. (3) (the lack of 1(—x,—y) is due to the sym-
metry conditions t(—x,—y) = 1(x,y)).

This results in two curves, as presented in Fig. 1a. The curves
divide the Lissajous figure into two parts of equal area. The advan-
tage of this approach is a decomposition of the resulting nonlinear
signal into parts corresponding to the elastic and viscous proper-
ties, without the necessity to apply any constitutive equations
(Cho et al., 2005).

The curves may be subjected to further decomposition. There
are two methods usually used for this: the first applies regression
analysis and the method of least squares (Cho et al., 2005), whereas
the second procedure is based on Chebyshev polynomials of the
first kind (Ewoldt et al., 2008), obtained according to the recur-
rence rule:

To(x) =1
Ti(x) =x 4)
Ta(X) = 2% - Tyo1(X) — Tnoa(x)

=TX)+7y), 6

Then 7’and 7" can be expressed by the following relations:

T'(X) = Yo Zen(wvyo) “Ta(X)
n:odd
o (5)

T'(F) = o> va(®,7) - Ta(¥)

n:odd

where X = x/7, = 7/70.Y =¥/7o = 7/70; the scaling is a result of the
orthogonal conditions of the Chebyshev polynomials (Boyd, 2001).
The coefficients e, and v, are called Chebyshev weighting coeffi-
cients and they represent the elastic and viscous parts in the nonlin-
ear viscoelasticity, respectively. The distribution of the e, and v,
coefficients’ values is depicted in Fig. 1. It should be noted that
the Fourier coefficients (G'y, G") in Eq. (2) fully characterize the
response of the material in the time domain; however, the physical
interpretation of the higher harmonics may only be carried out
based on the e, and v, Chebyshev coefficients (Ewoldt et al,,
2008; Hyun et al., 2011).

The Chebyshev coefficients can exhibit both positive and nega-
tive values (Hyun et al., 2011). The e; and »3 values are a time-
independent measure of the material’s nonlinearity against its
elastic and viscous properties. The higher order Chebyshev coeffi-
cients (n=5, 7, ...) can also be interpreted as a measure on the
material’s nonlinear response. The third coefficients, es and v,
are predominantly analyzed as the main parameters of
nonlinearity.

Typically, the interpretation of the liquid’s properties is carried
out by determining the values of e3 and v3:

>0 strain — stiffening
=0 linear elastic
<0 strain — softening

>0 shear —thickening
v3; =< =0 linear viscous (Newtonian)
<0 shear - thinning

e3 =

(6)
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