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a b s t r a c t

A rigorous dimensionless analysis of simultaneous heat and mass transfer equations for food drying was
developed and simplified for constant properties. From the simplified result, an analytical solution in 1D
rectangular coordinate system was obtained. As opposed to Luikov’s Equations (LE), the reported solution
considers the effect of temperature on interface moisture content. The analytical solution was obtained
by Laplace transform and complex inversion integral with space dependent function as initial conditions.
The solution behavior compared with some experimental data was detailed, and the potential of the
reported solution for the study of interface phenomena and variable mass transfer properties was
discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Food drying by convection is commonly accepted as a process in
which convective medium (generally air) heats food surface. This
heat produces the water evaporation and the excess produces a
temperature increase. As consequence heat conduction and water
diffusion are generated within food. Taking h(Tc � Ti) as the heat
transferred from air drying to food surface, the fraction of this heat
consumed in surface water evaporation is kcqcðXci � XcÞkwv , and
the excess transferred within food by conduction is �nbc � r(kbTi),
where nbc is a unit vector normal to food surface in direction from
food (b) to air (c). These facts are summarized in,

hðTi � TcÞ ¼ �kcqcðXci � XcÞkwv � nbc � kbrTi in Abc ð1Þ

The moisture content gradient produced by water evaporation
is then,

kcqcðXci � XcÞ ¼ �nbc � DbrðqbXbiÞ in Abc ð2Þ

the heat conduction within food,

@ðCpbqbTbÞ
@t

¼ r � kbrTb in Vb ð3Þ

And the water diffusion within food,

@ðqbXbÞ
@t

¼ r � DbrðqbXbÞ in Vb ð4Þ

The equilibrium relation for moisture content between phases
b and c is the result of sorption characteristics of product
(Córdova-Quiroz et al., 1996) and water vapor pressure (pw),

Xci ¼
awpw=p

1� awpw=p
18
29

aw ¼ f ðXbi; TiÞ pw ¼ f ðTiÞ ð5Þ

where the water activity (aw) as function of moisture and tempera-
ture is universally known as sorption isotherm.

Eqs. (3) and (4) are a system of two coupled partial differential
equations (PDE) organized as a Cauchy type boundary problem,
where the boundaries are defined by Eqs. (1) and (2) and the phase
equilibrium by Eq. (5). Eqs. (1) and (5) have been extensively used
for describe food drying (Balaban and Pigott, 1988; Mulet, 1994;
Wang and Brennan, 1995; Ruiz-López et al., 2004), and therefore
they will be called FDE.

Analytical solution of complete FDE has not been reported. In
order to develop an analytical solution several simplifications have
been introduced, such as, constant properties, negligible heat
transfer (constant temperature) and linear equilibrium (interface)
relation. Under these simplifications, FDE are reduced to a single
parabolic PDE (Eq. (4)), similar to heat conduction equation (Eq.
(3)). The analytical solution of simplified FDE (Eq. (4)) is commonly
attributed to Crank (1956). However, the first reference applied to
drying was by Sherwood (1929) who used the analytical solution
of analogous heat transfer Eq. (3) in different geometries from

http://dx.doi.org/10.1016/j.jfoodeng.2014.06.001
0260-8774/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +52 2299345701; fax: +52 934 57 01/2 934.
E-mail addresses: miguelg@itver.edu.mx, gaam61@yahoo.com.mx

(M.A. García-Alvarado).

Journal of Food Engineering 142 (2014) 39–45

Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier .com/ locate / j foodeng

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfoodeng.2014.06.001&domain=pdf
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.001
mailto:miguelg@itver.edu.mx
mailto:gaam61@yahoo.com.mx
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.001
http://www.sciencedirect.com/science/journal/02608774
http://www.elsevier.com/locate/jfoodeng


the mathematical compendium by Carslaw (1921). These analyti-
cal solutions have been universally used to both describe food dry-
ing and estimation of average water diffusivity from drying curves
since the first half of XX century until now (Sherwood, 1929;
Maskan and Fahrettin, 1998; Trujillo et al., 2007; Dissa et al.,
2008; Páramo et al., 2010; Liu et al., 2012; Torrez-Irigoyen and
Giner, 2014), but the analytical solution of FDE as a couple system
remains unsolved.

In order to find an analytical solution of a similar (albeit not
equal) system, the Luikov’s (LE) equations must be discussed. LE
represent the simultaneous heat and mass transfer in porous sol-
ids. This system is mathematically expressed as (Liu and Cheng,
1991; Chang and Weng, 2000; Abahri et al., 2011),

hðTi � TcÞ ¼ �ð1� eÞkmðUi � UcÞkwv � nbc � kbrTi in Abc ð6Þ

kmðUi � UÞ ¼ �nbc � DmrUi � nbc � hDmrTbi in Abc ð7Þ

Cpbqb

@Tb

@t
¼ kbr �rTb þ ekqbCm

@U
@t

in Vb ð8Þ

qbCm
@U
@t
¼ Dmr � rU þ hDmr �rTb in Vb ð9Þ

Three main differences can be appreciated with respect to FDE:
(1) water evaporation occurs within solid phase (Eqs. (6) and (8));
(2) a thermogradient effect (h in Eqs. (7) and (8)) is considered; and
(3) LE equations are given in terms of moisture potential (U) in
units called �M, instead of moisture content (Xb). The relation
between moisture potential (U) and moisture content (Xb) is
through a property called moisture capacity (Cm) defined as
(Pandey et al., 1999),

Cm ¼ Xb=U ð10Þ

As consequence (Dm) is not the average effective diffusivity, but a
transfer property called moisture potential conduction (Liu and
Cheng, 1991).

LE have been analytically solved for conventional geometries
(Tripathi et al., 1973; Liu and Cheng, 1991; Pandey et al., 1999,
2000; Chang and Weng, 2000; Abahri et al., 2011) under the

assumption of constant thermophysical (qb, Cm, Cpb, k) and transfer
properties (Dm, h, kb, km, h). Therefore, If FDE would be expressed in
terms of LE, their analytical solutions could be applied. The differ-
ences (1) and (2) do not represent a problem. Although there is no
evidence of thermogradient effect or internal evaporation during
food drying (Balaban and Pigott, 1988; Mulet, 1994; Wang and
Brennan, 1995; Maskan and Fahrettin, 1998; Ruiz-López et al.,
2004; Trujillo et al., 2007; Páramo et al., 2010; Dissa et al., 2008;
Liu et al., 2012), this situation can be expressed in LE with h = 0
and e = 0.

Actually, the problem is in equilibrium relation: Eq. (5) for FDE
and Eq. (10) for LE. In order to express FDE in terms of LE, it is nec-
essary to identify the moisture potential (U) in a known variable
during food drying. There are two possibilities: water chemical
potential (l = l0 + RT ln(aw)), or air moisture (Xc). In any case, Eq.
(10) is not enough to represent the relation when heat and mass
transfer exist, because any of the two drying variables suitable to
express U are a strong function of temperature as stated in Eq.
(5). Under negligible heat transfer, the average partition coefficient
deduced by Córdova-Quiroz et al. (1996),

Xci ¼ KeqXbi with Keq ¼
R Xb0

Xbe
ðXc=XbÞdXb

Xb0 � Xbe
ð11Þ

where the integral is numerically calculated with Eq. (5) at constant
temperature, is analogous to Eq. (10) if U = Xc. Under this conven-
tion Cm = 1/Keq, Dm = CmqbDb and km = qckc. However, at variable
temperature the relation is not valid. When simultaneous heat
and mass transfer are considered, Eq. (5) shows that the mass equi-
librium relation must be function of moisture and temperature. The
simplest way to express such equilibrium relation between phases
is with a linear model (Eqs. (10) and (11) are linear relations),

Xc ¼ Keq0 þ Keq1Xb þ Keq2T ð12Þ

situation not contemplated in LE. Then, there is no way to express
FDE in terms of LE.

Therefore, in this work a new analytical solution for simulta-
neous heat and mass transfer equation with constant properties
and a linear relation in interface, for food drying was deduced.
The procedure includes a rigorous dimensionless analysis of

Nomenclature

a thermodynamic activity
A surface transfer (m2)
Cp heat capacity (J kg�1 K�1)
Cm moisture capacity (kg water (kg dry comp)�1 �M�1)
D mass diffusivity (m2 s�1)
Dm mass conductivity (kg water �M�1 m�1 s�1)
h heat transfer coefficients (W m�2 K�1)

l characteristic length for mass or thermal diffusion (m)
k heat conductivity (W m K�1)
kc mass transfer coefficients (m s�1)
Keqj averaged equilibrium coefficients
n Unit vector normal to interface
p pressure (Pa)
t time (s)
T temperature (K or �C)
U moisture potential (�M)
V bulk volume (m3)
X moisture content (kg water (kg dry comp)�1)

Greek symbols
a thermal diffusivity (m2 s�1)
k latent heat of evaporation (J kg�1)

h thermographic coefficient (m2 s�1)
q dry components concentration (kg m�3)
n any dimensionless coordinate
x any thermal of transfer property (kg m�3)

Subscripts
0 initial or reference
e at equilibrium
i at interphase
w for water
v for vapor
b solid phase
c air phase

Dimensionless numbers
Bi Biot number
Bim mass Biot number
Ga new dimensionless number
Ko Kossovich number
Lu Luikov number
Pn Posnov number
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