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a b s t r a c t

This work presents a statistical method for internal damage inspection of almond nuts based on advanced
waveband selection and supervised pattern recognition techniques using near-infrared spectral data. Our
proposed method employs an optimal adaptive branch and bound algorithm to select a small set of
wavebands for use in a support vector machine classifier. Our case study involves discriminating almond
nuts with internal damage from normal ones. Experimental results demonstrate that our method gives
significantly higher classification rates than prior algorithms. Our classification model is promising for
commercial online processing, since only a few wavebands are used for classification and can thus be
recorded by many fast sensor systems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The almond, Prunus dulcis, is one of the top agricultural exports
of many countries including the United States. One problem for the
almond industry is the concealed damage in almonds, which is de-
fined as a browning of the kernel interior after cooking or roasting
(Reil et al., 1996). Fig. 1 shows images of a normal almond nut and
an internally damaged almond nut after cooking (Pearson, 1998).
Concealed damage may develop anytime during harvest when rain
occurs or after harvest when the kernels are exposed to warm and
moist environment (Kadar and Thompson, 1992; Reil et al., 1996).
Internally damaged almonds are not easily distinguished from nor-
mal ones by their external appearances, since there are no visible
defects on the exterior of the kernel before or after cooking. They
cause lower consumer consumption because of their reddish-
brown internal appearance, bitter flavor, and lower nutrition due
to degraded amino acids after roasting and are thus not acceptable
by the almond industry. Detection of internally damaged almond
nuts with a high accurate rate is thus crucial for quality control.

Near-infrared spectroscopy has been widely investigated for
agricultural product inspection, since it provides a noninvasive
and accurate inspection system (Huang et al., 2008). It has been
successfully applied in many agricultural applications. For exam-
ple, near-infrared spectroscopy has been used for identifying
anomalies and defects in food products such as chicken skin tumor
detection (Nakariyakul and Casasent, 2007a), bunch withering

disorder in date fruit (Mireei and Sadeghi, 2013), and contaminant
detection on poultry carcass (Nakariyakul and Casasent, 2008;
Windham et al., 2003). It has also been employed for food compo-
sition analysis including determination of soybean composition
(Ferreira et al., 2013; Luna et al., 2013), assessment of meat quality
in sliced chicken breasts (Grau et al., 2011), pork (Kapper et al.,
2012; Liao et al., 2012), and salmon fillets (Kimiya et al., 2013),
and measurement of fruit firmness (Jha et al., 2014; Li et al.,
2013). These uses occur, since near-infrared spectroscopy accu-
rately measures the transmission and absorption of near infrared
light by organic compounds and water.

Prior work (Pearson, 1999) on internal damage detection in al-
monds showed that, by using the near-infrared spectrum ranging
from 700–1400 nm, he could distinguish internally damaged al-
mond nuts from normal ones before roasting at an error rate as
low as 12.4%. Near-infrared transmission could detect changes in
sugars or oil oxidation levels of almond nuts which in turn affect
the concealed damage of almond nuts. However, the near-infrared
transmission system that measures the full transmission spectrum
of whole almonds is rather slow and cannot achieve an inspection
rate of 40 nuts/s required by almond processing plants. Thus, prior
related work (Casasent and Chen, 2003; Nakariyakul and Casasent,
2011) considered feature selection techniques to choose only a few
significant wavebands to use for classification. Use of a few wave-
bands is attractive in practice because it leads to savings in mea-
surement cost and speed; i.e., processing is faster and system
cost is less. Casasent and Chen (2003) employed a new feature
selection algorithm to select the best subset of wavebands for clas-
sification. First, they used the Kullback–Leibler distance (KLD) to
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reduce the number of original wavebands from 137 to 30; they
then applied the modified branch and bound (MBB) feature selec-
tion algorithm to select the subset of four and six wavebands from
the resultant 30 wavebands. A nearest neighbor classifier was used
as the classifier. We refer to this as the KLD–MBB algorithm. Nak-
ariyakul and Casasent (2011) considered the use of ratio features
(the ratio of the responses at two different spectral bands), since
ratio features are invariant to multiplicative scaling (Keshava,
2004). The fast ratio feature selection algorithm (Nakariyakul and
Casasent, 2011) was proposed to select two sets of ratio features
to detect internally damaged almonds with a high accuracy rate
of 91.2%.

In the present work, we propose an advanced feature selection
technique to select the optimal subset of wavebands based on sta-
tistical properties of the training set data for detection of almonds
with internal damage. The response of each sample at various
numbers of selected wavebands is then fed to a support vector ma-
chine (SVM) classifier to identify whether it is internally damaged.
We compare the classification results of our SVM-based method to
those obtained using the wavebands and extracted features chosen
by other feature selection and feature extraction algorithms and
show that our proposed method gives excellent detection results
with a low false positive error rate.

2. Materials and methods

2.1. Dataset and near-infrared transmission system

The database used in this work was provided by Dr. Tom Pear-
son from the Agricultural Research Service in Kansas, United States.
Mission variety almonds were used because they are more prone
to internal damage than other almond varieties. The transmission
spectra of 454 almond nuts from 700–1400 nm were measured be-
fore cooking. The central region of each almond was illuminated by
a 100 W quartz tungsten halogen lamp (Oriel, Stratford, CT, U.S.A.).
Two different fiber optic transmission spectrometers were used to
collect near-infrared spectra; a silicon photodiode array sensor
based spectrometer (Ocean Optics, Dunedin, FL, U.S.A.) was used
to measure the spectrum from k = 700–1000 nm in 0.48 nm inter-
vals, and an InGaAs photodiode array spectrometer (Control Devel-
opment, South Bend, IN, U.S.A.) was used to obtain the spectrum
from k = 950–1390 nm in 3.2 nm intervals. For each nut, ten
complete transmission spectra were measured, and the average
spectra from each spectrometer were used. Each spectrum was
then smoothed by a 19 point Savitzky–Golay second-order filter
(Hruschka, 1987), sampled at Dk = 5 nm increments and combined
to produce a spectra with 137 spectral samples from k = 710–
1390 nm. For each almond sample, its spectral response was
normalized by dividing its value by the mean of all values in the
sampled spectrum to correct for variations in skin quality, nut
thickness, and nut shape (Pearson, 1999). After the normalized

spectra were obtained, the nuts were cooked at 135 �C for 90 min
in a gravity convection oven (Lab-Line Instrument, Inc., Melros
Park, IL, U.S.A.) to induce browning of the kernel interior and were
then split at the suture for visual inspection. 109 out of 454 Mis-
sion almonds were found to have internal damage. All 454 samples
are divided into training, validation, and test sets. Table 1 shows
the number of normal and internally damaged samples in each
set. This dataset was also used in prior work (Casasent and Chen,
2003; Nakariyakul and Casasent, 2011; Pearson, 1999).

2.2. Feature selection

Feature selection refers to search techniques that select a good
small subset of features (wavebands) from an original larger set,
where a statistical criterion function J is used to measure the per-
formance of the selected subset. The branch and bound (BB) algo-
rithm (Narendra and Fukunaga, 1977; Somol et al., 2004) is the
only optimal feature selection algorithm that does not exhaus-
tively search all possible combinations of subsets. The BB algo-
rithm employs a bound to eliminate large subsets of possible
candidates that are known to give lower bound values in the solu-
tion tree. It requires that the criterion function J used satisfy the
monotonicity property, i.e., when a new feature is added to a fea-
ture set, the J value of the resultant feature set does not decrease.
The Mahalanobis distance is used as the criterion function J in this
work, since it is monotonic, computationally efficient, and widely
used in many prior applications (Pearson, 1999). A subset with a
large Mahalanobis distance indicates that the two classes are well
separated and can be easily classified. A subset with a larger J value
is thus better than one with a smaller J value.

To select the best set of m features out of n original features, the
BB algorithm selects the n–m features to be discarded. It creates a
search tree with n–m levels, where the root represents the set of
all n features and the leaves represent all possible subsets of m fea-
tures. Fig. 2 shows an example of the search tree when n = 5 and
m = 2. As the search traverses down the tree, the J value decreases
because more features are omitted. The problem is to find the best
leaf (one at level 3 in our Fig. 2 example) with the largest criteria
function J value.

The BB algorithm starts by analyzing all nodes at level 1, and the
successor nodes (all nodes below a node) of the node with the larg-
est J value are then evaluated further. The search continues until a
leaf at the bottom of the tree is reached; this provides an initial
bound B for the criteria function J. The algorithm then backtracks
to any unexplored nodes at level 2 and, if necessary, those unex-
plored nodes at level 1. If the J value for a node is less than B, its
successor nodes (leaves) at the bottom of the tree must have J val-
ues less than the bound B and cannot be the optimal subset. These
nodes are omitted or cut off from the tree, and thus J need not be
calculated for them. If a new leaf with a J value larger than B is
found, the bound B is updated with this new larger J value. The
search and backtracking continues until all leaf nodes in the tree
are either explored or cut off. The BB algorithm is thus optimal.

Among many versions of the BB algorithms in the literature, the
adaptive branch and bound (ABB) algorithm (Nakariyakul and
Casasent, 2007b) is shown to be the fastest one for the cases when

Fig. 1. Images of (a) normal and (b) internally damaged almond nuts after cooking
(Pearson, 1998).

Table 1
Number of normal and internally damaged almond nuts in the training, validation,
and test sets.

Type Training set Validation set Test set

Normal 139 34 172
Internally damaged 44 11 54
Total 183 45 226
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