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a b s t r a c t

A method is proposed for the simultaneous determination of the effective diffusivity and convective mass
transfer coefficient in solids which can be considered as infinite cylinders. The inverse method was used
to fit the analytical solution of the diffusion equation with convective boundary condition to experimen-
tal data of thin-layer drying kinetics of products with cylindrical shape. The proposed method was
applied to the drying kinetic of rough rice, using experimental data available in the literature. The statis-
tical indicators show that describing the diffusion process with convective boundary condition is more
accurate than the description with boundary condition of the first kind, commonly found in the literature.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-layer drying of agricultural products depends not only on
the product, but also on the type and condition of drying. A specific
drying process can be described by an adequate mathematical
model as, for example, the liquid diffusion model which involves
the diffusion equation (Luikov, 1968; Crank, 1992; Bird et al.,
2001). To solve the diffusion equation, the boundary condition at
the external surface of the product must be known. Boundary con-
ditions of the first kind have been used for the description of drying
with hot air for several types of grains (Gastón et al., 2002; Doymaz
and Pala, 2003; Doymaz, 2005; Mohapatra and Rao, 2005; Hacihaf-
izoglu et al., 2008; Silva et al., 2009). However, boundary condi-
tions of the third kind have been found to be more adequate for
the drying with hot air for other agricultural products (Queiroz
and Nebra, 2001; Wu et al., 2004; Erdogdu, 2005; Mariani et al.,
2008).

Generally, the diffusion equation must be numerically solved
for solids with arbitrary geometry and, particularly, with variable
thermo-physical parameters (Jia et al., 2001; Gastón et al., 2002;
Li et al., 2004; Wu et al., 2004; Carmo and Lima, 2005; Silva

et al., 2008a). Under certain conditions (spherical or cylindrical
geometries, infinite slabs, and constant thermo-physical parame-
ters and volume), the diffusion equation has an analytical solution
(Luikov, 1968; Crank, 1992). These solutions are used for the
description of thin-layer drying for various agricultural products
(Lima et al., 2004; Cunningham et al., 2007; Ruiz-López and Gar-
cía-Alvarado, 2007; Hacihafizoglu et al., 2008).

For the determination of thermo-physical parameters, as effec-
tive diffusivity and convective mass transfer coefficient, an ade-
quate mathematical model must be tailored to the description of
the drying kinetic of a product. Empirical models, generally simple
regressions, can be used to determine the thermo-physical param-
eters (Park et al., 2002; Tello-Panduro et al., 2004; Silva et al.,
2008b). However, in the case of the liquid diffusion model an opti-
mization algorithm, based on the inverse method, can be generally
used (Mariani et al., 2008; Silva et al., 2008a, 2009; Da Silva et al.,
2009). Mariani et al. (2008) proposed an optimization algorithm
for the determination of the apparent thermal diffusivity of banana
using a numerical solution of the diffusion equation. Da Silva et al.
(2009) proposed two algorithms, one deterministic and another
stochastic, to determine the effective mass diffusivity of drying of
mushrooms, using the analytical solution of the diffusion equation
for an infinite slab with boundary conditions of the first kind. Silva
et al. (2009), assuming boundary condition of the first kind, pro-
posed an optimizer which scans the domain of the diffusivity to
find the minimum of an objective function. The optimizer was
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coupled to the analytical solution of the diffusion equation for a
sphere and applied to the drying kinetic of cowpea. The optimizer
needs neither an initial value nor the indication of a search interval
for the variable of interest.

This article proposes an optimization algorithm coupled to the
analytical solution of the diffusion equation with boundary condi-
tion of the third kind. The method aims at the determination of the
effective diffusivity and the convective mass transfer coefficient of
thin-layer drying for products with cylindrical geometry, and was
applied to the drying kinetic of rough rice.

2. Material and methods

It was assumed in this article that the liquid diffusion model is
adequate to describe thin-layer water transport. This model is
widely accepted to describe water transport with boundary condi-
tion of the first kind (Doymaz and Pala, 2003; Bello et al., 2004;
Mohapatra and Rao, 2005; Thakur and Gupta, 2006), as well as
with boundary condition of the third kind (Queiroz and Nebra,
2001; Wu et al., 2004).

2.1. The diffusion equation

The diffusion equation for a property U can be written in a gen-
eral form as (Luikov, 1968; Crank, 1992; Bird et al., 2001)

@

@t
ðkUÞ ¼ r � ðCUrUÞ þ S; ð1Þ

where k and CU are parameters of the diffusion process and S is a
source term. For a cylinder with length L, which is much larger than
its radius R, a one-dimensional diffusion equation can be applied
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where r is the distance of a point from the cylinder axis.
Setting k = 1, CU = Def (effective diffusivity), U = X (dry basis

moisture content) and S = 0, Eq. (2) can be rewritten for the mois-
ture transport in a solid considered as an infinite cylinder
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Eq. (3) can be numerically resolved and, under certain condi-
tions, also analytically. In this article, an analytical solution will
be used to describe moisture diffusion in cylindrical bodies.

2.2. Hypotheses for obtaining analytical solutions

The diffusion equation for the description of water transport in
solids can be analytically solved under the following hypotheses:

� the solid is homogeneous and isotropic;
� the initial moisture distribution is uniform;
� liquid diffusion is the only transport mechanism of water

inside the solid;
� the dimensions of the solid do not vary during diffusion;
� the effective diffusivity do not vary during diffusion;
� the convective mass transfer coefficient is constant dur-

ing diffusion.

This article studies the drying of cylindrical solids under the
assumption that the boundary condition of the third kind is ade-
quate. Therefore, the analytical solution of the diffusion equation
for this case is presented below.

2.3. Analytical solution for convective boundary condition

The convective boundary condition, also called boundary condi-
tion of the third kind or still Cauchy boundary condition, is ex-
pressed by imposing equal internal diffusive flux at the boundary
of the infinite cylinder and external convective flux near this
boundary, i.e.

�Def
@Xðr; tÞ
@r

����
r¼R

¼ h Xðr; tÞð jr¼R � Xeq
�
: ð4Þ

Here, h is the convective mass transfer coefficient, X(r,t) is the
moisture content at radial distance r and time t, Xeq is the equilib-
rium moisture content in a solid of given drying matter, and R is
the radius of the infinite cylinder.

The solution X(r,t) of Eq. (3) for an infinite homogeneous cylin-
der with uniform initial moisture content X0 and boundary condi-
tion defined by Eq. (4) can be obtained by separation of variables
(Luikov, 1968; Crank, 1992)

Nomenclature

Bi mass transfer Biot number
Da lower limit of the search interval for Def

Db upper limit of the search interval for Def

Def effective diffusivity (m2 s�1)
h convective mass transfer coefficient (m s�1)
J0 Bessel function of first kind and zero order
J1 Bessel function of first kind and first order
L length of the cylinder (m)
n number of subdivisions of the search intervals
nt number of first terms of the series before cut-off
Np number of experimental points
r cylindrical coordinate (m)
R radius of the cylinder (m)
R2 determination coefficient
S source term (dimension depends on the process under

study)
t time (s)
V volume of the cylinder (m3)
X moisture content (kg/kg), dry basis
X average moisture content (kg/kg), dry basis

X* dimensionless moisture content
Xeq equilibrium moisture content (kg/kg), dry basis
X0 initial moisture content (kg/kg), dry basis
Xexp

i experimental average moisture content at the ith point
Xana

i average moisture content at the same ith point calcu-
lated from the analytical solution

Greek symbols
CU parameter of the diffusion process (dimension depends

on the process under study)
DDef length of the scanning interval of Def

k parameter of the diffusion process (dimension depends
on the process under study)

ln roots of the characteristic equation for an infinite
cylinder

ri standard deviation of the experimental average mois-
ture content at the point i

U dependent variable of the diffusion equation (dimension
depends on the process under study)

v2 chi-square objective function
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