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a b s t r a c t

A reliable, quick and userfriendly method for thermal diffusivity estimation has been developed. An
appropriate software tool, based on least square optimization of a finite difference solution of Fourier’s
equation, has been created and an appropriate measuring cell has been designed and made in order to
decrease the systematic error in probe positioning. The method has been experimentally validated and
its results have been compared with those obtained by three other available methods. Several foods
(tomato products, low-acid pasta sauces, olive pate, confectioner’s custard and apricot jam) were tested
and in every case the method proved to be effective. The developed software also allowed estimation of
thermal diffusivity via heat penetration curves obtained by variable temperature treatments. So it has
been also possible to exclude the contribution of container material from the estimation of thermal dif-
fusivity of liquid packed foods. The proposed method turns out to be a useful tool for scientific design of
several processes, such as sterilization and pasteurization, and for correct control of transport, storage
and distribution of foods.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Correct knowledge of thermal properties is essential for effi-
cient and economical design and control of all food processing
operations involving heat transfer such as heating, cooling, freez-
ing, thawing, and frying. Precise and reliable values of thermal
properties of foods are necessary to simulate temperature during
heat treatments, transport, storage and distribution. Conductive
heat exchange is an almost simple physical phenomenon: the clas-
sic mathematical model of conduction is Fourier’s equation (1)

q � cp �
oT
ot
¼ k � r2T ð1Þ

Conductive heat exchange depends on three physical proper-
ties: density (q), thermal conductivity (k) and specific heat capac-
ity (cp). These properties can be included in a single parameter
called thermal diffusivity, defined by the ratio

a ¼ k
q � cp

ð2Þ

Thermal diffusivity (a) physically relates the ability of a mate-
rial to conduct heat to the ability to store it. Many methods for
determining thermal conductivity and thermal diffusivity were

developed. Apart from non-conventional techniques, such as ac
method (Calzona et al., 1993), thermal-wave cavity (Balderas-Lopez
and Mandelis, 2001), thermal lens technique (Bernal-Alvarado et al.,
2003), the majority of available methods were reviewed by Reidy
and Rippen (1971) and Choi and Okos (1986). Singh (1992) re-
ported three models based on food composition (Dickerson, 1969;
Choi and Okos, 1986; Martens, 1980). Information on thermal
properties of porous foods is presented in a review paper by Wal-
lapapan et al. (1983). There are two categories of measurement for
thermal conductivity and several experimental techniques have
been developed for each category; in some techniques, while ther-
mal conductivity is measured, thermal diffusivity is also obtained:
(a) steady-state methods, such as hot plate method (Lentz, 1961),
concentric cylinder and concentric sphere method and (b) transient
state methods such as Fitch method (Fitch, 1935) and line heat source
method (Nix et al., 1967; Sweat and Haugh, 1974; Nagasaka and
Nagashima, 1981; Kumbhar et al., 1981; Choi and Okos, 1983; Rah-
man and Potluri, 1991; Balaban and Pigott, 1992; Kurozawa et al.,
2005); thermistor probe method has been used by Valvano et al.
(1985), Kravets (1988), van Gelder and Diehl (1996) for the deter-
mination of thermal properties, respectively, of biomaterials, milk
and tomato products. A reference method was proposed by Ball
(1923) and Ball and Olson (1957), who developed what is known
as the ‘‘formula” method. It is based on the fact that when heat
transfer coefficient of the surrounding medium approaches infin-
ity, the logarithm of the rate of change of temperature becomes
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constant in time and space, and is proportional to the thermal dif-
fusivity of the sample. As noted by Mohamed (2003), one of the
main serious limitations of this method is that it does not handle
the case of variable treatment temperature. Sweat (1986) recom-
mended the calculation of thermal diffusivity by inserting experi-
mental thermal conductivity, specific heat and density values in
the thermal diffusivity equation (2). If it is difficult or even impos-
sible to measure directly one or more components in Eq. (2), or if
the measured values are not sufficiently reliable and precise,1 ther-
mal diffusivity can be determined from analytical or numerical solu-
tions of Fourier’s equation (1) which fit well the experimental data.
In this case thermal diffusivity is estimated as the value of the
parameter a which maximizes the quality of approximation of tem-
perature changes in the sample during treatments; a least square
algorithm is normally applied to determine the optimal a value.
Most recent studies (Carbonera et al., 2004) view numerical simula-
tions of Fourier’s equation (1) as the best way to obtain thermal dif-
fusivity value from experimental temperature data. As noted by
Markowski et al. (2004), in this case the physical meaning of the
thermal diffusivity is different than that based on Eq. (2), and ther-
mal diffusivity determined by that method is usually referred to as
effective or apparent thermal diffusivity. Many authors developed
several methods, based on least square estimation (LSE), to investi-
gate the thermal properties of foods. Garrote et al. (2000) calculated
the thermal diffusivity of potatoes by using an explicit numerical
solution. Carciofi et al. (2002) determined the thermal diffusivity
of mortadella, cooked in a steam oven, by using actual cooking pro-
cess data and a least squared algorithm based on an analytical solu-
tion of Fourier’s equation (1). Zhang et al. (2002) used a finite
element method (FEM) for bi-dimensional heat conduction with
convective boundary conditions in the precooking and cooling of
skipjack tuna (Katsuwonas pelamis). Mohamed (2003) exploited a
computer solution to calculate the thermal diffusivity value by using
a tri-diagonal matrix and an alternative direction implicit finite dif-
ference method; experimental validation was carried out by using
canned tomato sauce and 8% bentonite suspension. Zorrilla and
Singh (2003) used a finite difference method with explicit solution
mode to model the heat transfer in double-sided cooking of meat
patties considering two-dimensional geometry and radial shrinkage.
Carbonera et al. (2004) experimentally determined the thermal dif-
fusivity of a commercial tomato paste by means of both the ‘‘for-
mula” method and an optimization method based on squared error
minimisation. Markowski et al. (2004) determined the thermal diffu-
sivity of Lyoner-type sausages during water bath cooking and cool-
ing, using both a numerical and an analytical solution of Fourier’s
heat transfer equation (1). Kubasek et al. (2006) found out thermal

diffusivity of olive oil using a numerical solution based on finite ele-
ments. Huang (2007) used a computer simulation program based on
finite difference to estimate the apparent thermal diffusivity of beef
frankfurters. Mariani et al. (2008) determined thermal diffusivity of
banana using a finite difference method coupled to an optimization
technique of differential evolution used in inverse method.

The main goal of the present study is to develop and experimen-
tally validate a computer code based on least square optimization
of a finite difference solution of Fourier’s equation in order to ade-
quately and quickly calculate thermal diffusivity of foods by using
heat penetration curves. The second objective is to estimate ther-
mal diffusivity of some food products intended for sterilization or
pasteurization for which no references were found.

2. Modelling

2.1. Mathematical model

The assumptions considered in the simulation were as follows:
two-dimensional cylindrical sample, homogeneous and isotropic
sample, constant thermophysical properties, negligible heat gener-
ation inside the sample, infinite heat transfer coefficient at the sur-
face, absence of convective fluxes inside the sample. For a 2D (r,z)
axial-symmetric isotropic medium (Fig. 1), the Eq. (1) can be writ-
ten in cylindrical coordinates

1
a
� oT
ot
¼ o2T

or2 þ
1
r
� oT
or
þ o2T

oz2 ð3Þ

The following boundary conditions were used:

t ¼ 0! Tðr; z;0Þ ¼ T i ð4Þ

r ¼ 0! oTð0; z; tÞ
or

¼ 0 ð5Þ

r ¼ R! TðR; z; tÞ ¼ TbðtÞ ð6Þ
z ¼ 0! Tðr;0; tÞ ¼ TbðtÞ ð7Þ
z ¼ H! Tðr;H; tÞ ¼ TbðtÞ ð8Þ

The solution of the above governing equations is difficult to ob-
tain using analytical methods. Therefore, approximate methods of
solution are used to solve them.

2.2. Finite difference solution

The method used in the present study is the finite difference
approximation. In the finite difference approach, the continuous
problem domain is discretized, so that the dependent variables
are considered to exist only at discrete points. Derivatives are
approximated by differences, resulting in an algebraic representa-

Nomenclature

Greek letters
a thermal diffusivity
w error function
q density

Latin letters
cp specific heat capacity
H height of the sample
k thermal conductivity
N axial space-nodes number
Q time-intervals number
R radius of the sample
S radial space-nodes number

t time
T temperature

Super/subscripts
b imposed at the surface
ek experimental at time (k � Dt)
i initial
n axial distance step index
p time step index
s radial distance step index
sk simulated at time (k � Dt)

1 For, e.g. multi-phase or non-homogeneous systems.
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