

Contents lists available at ScienceDirect

Journal of Industrial and Engineering Chemistry

journal homepage: www.elsevier.com/locate/jiec

Review

A review on solid adsorbents for carbon dioxide capture

Seul-Yi Lee, Soo-Jin Park*

Department of Chemistry, Inha University, 100 Inharo, Incheon, Republic of Korea

ARTICLE INFO

Article history:
Received 3 June 2014
Received in revised form 31 August 2014
Accepted 4 September 2014
Available online 16 September 2014

Keywords:
CO₂ capture
Dry adsorbent
Carbon materials
Zeolite
Silica
Metal-organic framework
Alkali metal
Metal oxide carbonate

ABSTRACT

Global warming is considered as one of the great challenges of the twenty-first century. CO_2 capture and storage (CCS) technology is attracting increasing interest to reduce the ever-increasing amount of CO_2 released into the atmosphere and its impact on global climate change. CO_2 capture process is a core technology, and accounts for 70–80% of the total cost of CCS technologies. CO_2 capture technologies are categorized as post-combustion, pre-combustion, and oxy-fuel combustion. Among these, post-combustion CO_2 capture processes are regarded as being important green and economic technologies. It is very important to develop new, highly efficient adsorbents to achieve techno-economic systems for post-combustion CO_2 capture. In this review, we therefore summarize dry solid adsorbents, which are divided into non-carbonaceous (e.g., zeolites, silica, metal-organic frameworks and porous polymers, alkali metal, and metal oxide carbonates) and carbonaceous materials (e.g., activated carbons, ordered porous carbons, activated carbon fibers, and graphene), with a focus on recent research.

© 2014 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Contents

Introduction
Global warming and carbon economy
${ m CO_2}$ capture and storage (CCS).
CO ₂ capture technology
Classification of ${ m CO}_2$ capture technology
Post-combustion capture technology
CO ₂ capture using dry adsorbents
Non-carbonaceous dry adsorbents
Zeolites
Silica materials
Metal-organic frameworks (MOFs) and porous polymers
Alkali-metal-based materials
Metal oxide carbonate materials
Carbonaceous adsorbents
Activated carbons
Ordered porous carbons
Activated carbon fibers (ACFs)
Graphene
Conclusions
Acknowledgements
References

^{*} Corresponding author. Tel.: +82 32 876 7234; fax: +82 32 867 5604. E-mail addresses: sjpark@inha.ac.kr, psjin@krict.re.kr (S.-J. Park).

Introduction

Global warming and carbon economy

Humans are endangered by global warming caused by the greenhouse effect. The greenhouse effect can be attributed to an increase in the emissions of greenhouse gases such as carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), chlorofluorocarbons, and sulfur hexafluoride (SF_6) since the beginning of industrialization. The average world temperature has increased by 0.74% in the past 100 years and is expected to increase by another 6.4% by the end of the twenty-first century [1,2].

Global warming leads to droughts, floods, heat waves, and destruction of ecosystems, and the economic loss due to climate change is expected to be 5-20% of the world's gross domestic product. CO_2 is a major greenhouse gas and is the main cause of global warming [3,4].

Major sources of CO₂ emissions are thermoelectric power plants and industrial plants (such as steel mills and refineries), which account for approximately 45% of global CO₂ emissions. According to a report in 2013 by the International Energy Agency (IEA), the global atmospheric CO₂ concentration has increased from a preindustrial value of ~280 parts per million by volume (ppmv) to \sim 394 ppmv in 2012. Most of the CO₂ emissions into the atmosphere originate from the combustion of fossil fuels (\sim 99% of global annual CO₂ emissions of approximately 32 Gt) [5]. The IEA and the Organization for Economic Co-operation and Development (OECD) forecast that CO₂ capture and storage (CCS) could take care of approximately 14%, the expected reduction in volume of CO₂ emission potentials [6]. Furthermore, the Intergovernmental Panel on Climate Change (IPCC) reported that it would be possible to achieve a more than 50% reduction in CO2 emissions from 2009 levels by 2050. According to their model for estimating CO₂ capture potential, it is estimated that 30 billion tons of CO₂ can be captured and stored within the European Union (EU) by 2050. Globally, 240 billion tons of CO₂ could be captured by 2050 [7]. Without CCS technology, the cost of meeting a 50% global reduction target by 2050 will be 70% higher [8].

Because of these global concerns, strict global regulations of CO₂ emissions to the atmosphere have been imposed. With enforcement of the Kyoto Protocol, there has been increased interest in the atmospheric residence time of CO₂ and its contribution to the greenhouse effect, and self-reduction techniques for CO₂ generation rates and post-treatment of CO₂ have received significant attention [9,10]. Various industries need to deal actively with these regulations in order to survive. CCS has

great potential to be one of the more important green technologies in the future.

There is an urgent need to develop CO_2 reduction technologies, and we believe that CCS is the main technology that can reduce CO_2 emissions from the energy sector. However, with the exception of developed countries, there is very little concern about, and investment in, developing CCS. Fortunately, the world is now paying more attention and aggressive efforts are being made to commercialize CCS [11–13]. A global CCS market has begun to develop, along with certified emission reductions. The IEA/OECD, EU, and United States forecast that the CCS market will grow to its full capacity by 2020, and there is a need to obtain better insights into the techno-economic possibilities of CO_2 capture.

CO₂ capture and storage (CCS)

The basic concept of CCS is to capture CO₂ emissions without releasing them into the atmosphere; they include sequestration or storage, as shown in Fig. 1. CCS is the process of capturing and compressing CO₂ generated by existing large sources of high-density CO₂, transporting and depositing it safely in the ground or an ocean-bedrock sediment layer, and long-term monitoring [14–16]. Transportation of CO₂ refers to transporting captured and compressed CO₂ to a storage site *via* a pipeline or other means of transport [17,18]. Storage of CO₂ includes post-management: the observation and prediction of the movement of the bedrock layer after CO₂ storage and evaluation of its effect on the environment, and evaluation of the bedrock layer's characteristics for depositing captured CO₂ (basins, oilfields, etc.) in the ground or below the sea [19,20]. Technologies for capture, transportation, and storage of CO₂ are summarized in Table 1.

All the above processes are called CCS. In addition, CCS technologies allow the continuing usage of fossil fuels and stabilize the density of greenhouse gases. Moreover, CCS may decrease the total cost of CO_2 reduction and offer different ways to reduce CO_2 emissions [21–23]. CCS is a comprehensive technology for direct reduction of CO_2 using the above–mentioned processes.

CO₂ capture technology

Classification of CO₂ capture technology

 CO_2 capture is a core technology and accounts for 70–80% of the total costs of CCS technologies. It is classified at (i) post-combustion, (ii) pre-combustion, and (iii) oxy-fuel combustion

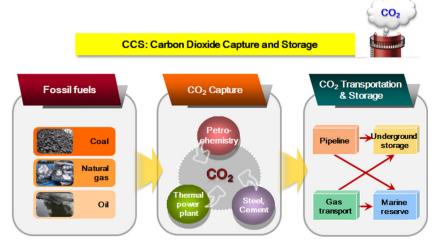


Fig. 1. Concept and summary of CO₂ capture and storage (CCS).

Download English Version:

https://daneshyari.com/en/article/226776

Download Persian Version:

https://daneshyari.com/article/226776

<u>Daneshyari.com</u>