Contents lists available at ScienceDirect

Journal of Industrial and Engineering Chemistry

journal homepage: www.elsevier.com/locate/jiec

Short communication

Zirconia-supported niobia catalyzed formation of propanol from 1,2-propanediol via dehydration and consecutive hydrogen transfer

Gongming Peng, Xicheng Wang, Xiufang Chen, Yijun Jiang, Xindong Mu*

Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China

ARTICLE INFO

Article history: Received 4 July 2013 Accepted 10 November 2013 Available online 16 November 2013

Keywords: Zirconia-supported niobia 1,2-Propanediol Hydrogen transfer

ABSTRACT

Vapor-phase catalytic dehydration of 1,2-propanediol was investigated over Zirconia-supported niobia catalysts. The catalysts exhibit selectivity favoring propanol (approximately 39%) at 85.0% 1,2-propanediol conversion at 290 °C under 1 atm N₂. The ZrNbO catalysts were analyzed by various techniques; the results indicated that the active sites were weak Brønsted acid sites. A dehydration and hydrogen transfer mechanism was also proposed.

© 2013 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

1. Introduction

Large amounts of glycerol are currently generated as a byproduct in biodiesel manufacture by transesterification of seed oils [1]. The global production for refined glycerol has increased over the last few years at an average annual rate of 8.7%, and this increased supply has subsequently resulted in a sharp decrease in the price of this product [2]. Consequently, it is highly desirable to convert low-cost glycerol into value-added chemicals or materials. Toward this end, many research groups study transforming glycerol into value-added chemicals, such as dihydroxyacetone [3–5], acrolein [6,7], 1,2-propanediol (1,2-PDO), 1,3-propanediol (1,3-PDO) [8–11], and biopropanols, by catalytic processes.

Among the products, 1-propanol is also a high value commodity chemical, which is used mainly as a solvent, a component of printing ink and a chemical intermediate for the production of *n*propyl acetate [12]. There are various strategies for the production of 1-propanol from glycerol or glycerol-derived PDO. One process used to access this compound involve the conversion of glycerol to biopropanols on using variety of catalysts [2,13]. Another welldeveloped procedure accesses biopropanols via glycerol-derived propanediols. So far, glycerol hydrogenolysis has been extensively studied. It has been known that the glycerol hydrogenolysis to 1,2-PDO is more selective than that to 1,3-PDO [14–17]. As a result, 1,2-PDO is more preferable as a substrate for the production of 1propanol. On the other hand, there have been several works on the catalyst development for the glycerol hydrogenolysis to 1,3-PDO like Rh–ReOx [18], Ir–ReOx [19], and Pt–WOx [20] and so on. Commonly, these catalysts showed the selective hydrogenolysis of 1,2-propanediol to 1-propanol (selectivity is beyond 80%) and that of 1,3-propanediol to 1-propanol [21]. Totally, the catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol have a potential in the production of 1-propanol from glycerol. However, these systems need high pressure hydrogen and Rh-based or Ptbased catalysts, which are expensive.

Achieving low cost and mild reaction conditions are the prime interests for this reaction. Zhang et al. [22] found zeolites can catalyze 1,2-PDO into 1-propanol at 250–300 °C at ambient pressure under nitrogen. However, as a by-product, the yield of 1-propanol was only 21.2%. Therefore, how to improve the 1propanol yield from 1,2-PDO with a non-noble metal catalyst without using hydrogen is an interesting and challenging work.

Herein, we report the development of a ZrNbO catalyst; the use of this catalyst results in a 33.0% yield of 1-propanol at 85.0% conversion of 1,2-PDO under 1 atm N_2 . To the best of our knowledge, this is the highest yield of 1-propanol achieved under an inert atmosphere at ambient pressure. Notably, 1-propanol was formed as the main product, with acetol and propanal as additional products, even though no molecular hydrogen or additional hydrogen donor, such as 2-propanol [23] or formic acid, [24] was present in the system.

2. Experimental

2.1. Catalyst preparation

* Corresponding author. Tel.: +86 352 80662723; fax: +86 352 80662724. *E-mail address*: Muxd@qibebt.ac.cn (X. Mu). ZrO_2 (S_{BET} = 168 m² g⁻¹) was prepared by the hydrolysis of zirconium chloride as reported by G.K. Chuah et al. [25]. γ -Al₂O₃

1226-086X/\$ – see front matter © 2013 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jiec.2013.11.042

Physico-chemical	properties o	f the	catalysts

Catalyst	Nb (%)	Nb (%) Nb ₂ O ₅ (%)		Nb Surface density (Nb nm ⁻²)
ZrO ₂	-	-	168	-
ZrNbO-0.7	1.6	2.37	153	0.7
ZrNbO-1.2	2.6	3.84	143	1.2
ZrNbO-2.0	4	5.94	131	2.0

(Chinalco, $S_{BET} = 500 \text{ m}^2 \text{ g}^{-1}$), and TiO_2 (P-25, Degussa, $S_{BET} = 55 \text{ m}^2 \text{ g}^{-1}$) were also tested for comparison.

30% HSiW/SiO₂ was prepared by an impregnation method, according to the literature [26]. 15% WOx/ZrO₂ was prepared by impregnation of zirconium oxyhydroxide solids with ammonium metatungstate solutions [27]. 15% WOx/Al₂O₃ and 15% WOx/TiO₂ were prepared by incipient wetness impregnation using ammonium metatungstate as the precursor. 5% NbOx/Al₂O₃ and 5% NbOx/TiO₂ were prepared by incipient wetness impregnation using ammonium oxalate-niobate as the precursor. All of above solution except HSiW/SiO₂ dried over night at 110 °C before grinding and calcination at 600 °C for 2 h.

ZrNbO catalyst was prepared by impregnation. The impregnation was conducted in acidified water with ammonium oxalatoniobate [6]. The samples obtained were denoted as ZrNbO-*x*, with *x* the Nb Surface density. It should be noted that support here is different from that in the work of P. Lauriol-Garbey et al. [6]. The support corresponds to a mixture of tetragonal and monoclinic phases with a specific surface area of 168 m² g⁻¹(Table 1).

2.2. Catalyst characterization

The X-ray powder diffraction (XRD) patterns of catalyst samples were obtained with a Bruker D8 Advance X-ray diffraction meter under Ni-filtered Cu-K α radiation. BET surface area was measured by nitrogen adsorption on a Micromeritics ASAP 2020 surface area and porosity analyzer. NH₃-TPD and CO₂-TPD experiments were performed with a Micromeritics Autochem II chemisorption analyzer. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra were recorded with a Nicolet 710 FT-IR spectrometer.

2.3. Catalytic test

The conversion of 1,2-PDO to 1-propanol was performed in a fixed-bed reactor (8 mm i.d.). In a typical reaction, 1 g of catalyst was mixed with a known amount of quartz sand and put into the tube reactor. After the temperature of the reactor had reached 290 °C, a 30 wt.%1,2-PDO aqueous solution was pumped into the reactor at a flow rate of 1.8 mL h⁻¹ using a syringe pump (SSI Series II Pump). Nitrogen, at a flow rate of 30 mL min⁻¹, was used as carrier gas. The products were collected hourly in ethanol cooled by an ice-water trap. The products in the resultant solutions were identified by data collected from gas chromatograph (GC, 7890A, Agilent, USA) coupled with a mass spectrometer (MS, 5975C, Agilent, USA) after the reaction was complete.

3. Results and discussion

The performance of different catalysts with respect to 1,2propanediol conversion was tested, and the results were shown in Table 2. Over ZrO_2 , 1,2-propanediol was transformed mainly to acetol via dehydrogenation with 22.9% selectivity, propanal and acetone via dehydration and, finally, only 19.8% 1-propanol was detected (Table 2, entry 1). Over Al₂O₃, the selectivity for 1propanol was only 17.4% (Table 2, entry 2) and 11.2% selectivity for 1-propanol over TiO₂ (Table 2, entry 3) was observed. However, the overall conversion of 1,2-propanediol was still low over these catalysts.

When using strongly Brønsted acidic 30% HSiW/SiO₂, propanal was produced with a selectivity of 86.0% via pinacol rearrangement [28] (Table 2, entry 5). Nb₂O₅, which is strongly Lewis acidic (Aladdin, 99.95%), produced products in lower selectivity with

Table 2

Results of 1,2-propanediol conversion over various catalysts^a.

Entry	Catalyst	Conversion (%)	Yield ^b (%)	$S_i^{c}(\%)$				
				Propanol	Propanal	Dioxolane	Acetol	Acetone
1	ZrO ₂	53.7	10.6	19.8	17.9	-	22.9	2.4
2	γ -Al ₂ O ₃	36.3	6.3	17.4	18.6	6.7	33.4	3.5
3	TiO ₂	32.9	3.7	11.2	26.2	0.4	13.5	11.6
4	Nb ₂ O ₅	94.8	9.2	9.7	51.2	5.1	3.3	12.7
5	30%HSiW/SiO ^d	96.9	1.2	1.2	86.0	3.2	-	5.0
6	WO_x/ZrO_2	86.4	13.9	16.1	54.3	4.1	10.3	1.0
7	WO_x/Al_2O_3	81.9	11.7	14.3	63.6	-	2.9	1.8
8	WO _x /TiO ₂	82.0	2.0	2.8	66.6	1.0	4.1	10.4
9	NbO_x/Al_2O_3	85.1	9.8	11.5	44.2	3.3	11.5	4.9
10	NbO_x/TiO_2	74.5	6.8	9.1	33.4	0.5	6.4	8.6
11	ZrNbO-0.7	70.9	19.1	27.0	25.0	-	15.1	3.6
12	ZrNbO-1.2	85.0	33.1	39.0	27.4	1.0	21.8	4.7
13	ZrNbO-2.0	86.1	26.2	30.5	29.7	-	18.9	9.5
14	Ferrierite(20) ^e	83.2	21.2	25.5	29.1	39.1	-	1.2

^a Reaction conditions: temperature 290 °C, N₂ flow rate 30 mL min⁻¹, 1,2-propanediol WHSV = 1.8 h⁻¹, 1 g catalyst, conversion and selectivity were calculated by collecting the effluent produced between initial 1 and 8 h.

^b Yield of propanol.

^c S_i = Carbon selectivity, dioxolane, 2-ethyl-4-methyl-1,3-dioxane; other by-products are allyl alcohol, 2-ethyl-2-butenal, 2-methyl-2-cyclopenten-1-one, acetic acid and several unknown products.

^d T=210 °C.

e Reference [12]

2642

Download English Version:

https://daneshyari.com/en/article/227313

Download Persian Version:

https://daneshyari.com/article/227313

Daneshyari.com