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Introduction

Due to the short useful lifetime of electronic products they turn
to e-waste which originates pollution problem for hydrosphere,
biosphere even atmosphere [1–3]. Generally the harmful materials
of estimated global e-waste which is about 35 to 50 million tons
per year includes nano-materials that contains lead, chromium,
mercury, cadmium and arsenic into environment [4–12]. To
control the e-waste, the existed current methods are including
reusing, refurbished and recycling process of second-hand
electronics. Recycling process covers only 23% of the e-waste
which may not be fully recovered even the amount of the
hazardous materials [13]. In addition, the reusing and refurbished
processes are unable to even postpone the old technology any
more while the generation rate of very short lifetime electronic
devices is quite high around the world [14].

On the other hand, the lifetime could be improved by high quality
electrical protection from common generated overvoltage including
lightning strikes, power outages tripped circuits, power transitions,
power malfunctions, electromagnetic pulses and inductive spikes
in the associated circuit [15]. The overvoltage damages the electrical
devices which designed to operate at normal voltages. Currently,
the protection as a preventive action is carried out by a voltage-
limiting device such as varistor which is associated in parallel of
electronics into the electrical circuit. It means the varistor has
presented high resistance ohmic behavior within the operating
normal voltage that the normal electrical current never flows
through the associated varistors [16]. On the other hand, the varistor
changes into non-ohmic behavior at the overvoltage and allows the
current to flow through itself. In this way, the varistor diverts the
overvoltage safely from the device at certain threshold voltage
[17,18]. However, most discarded electronic appliances were
damaged due to the overvoltage that must be deflected by the
associated varistors. It is obvious that the varistors unable to protect
the devices during surge due to their insufficient non-ohmic
behavior which is originated from the used ceramic core.

The used ceramic in the varistors has been made of n-type
semiconductor such as zinc oxide (ZnO) and other metal oxides as
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A B S T R A C T

The electronic devices turn to e-waste due to their insufficient electrical protection which is provided by

a ceramic core varistor. The ceramic consists of the surrounded ZnO grains of melted an additives layer.

The layer is origin of the quality of the protection. To enhance the quality and consequently prevent e-

waste, the fabrication of the varistor was modeled by artificial neural network. The model predicted the

optimized condition that was experimentally fabricated and electrically characterized. The results

confirmed the model predictability. In conclusion, the optimization which has industrial scales up

potential warranties the electronic protection that controls the global e-waste.
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additive [19,20]. Since, the microstructure of the ceramic is made
of ZnO grains that is surrounded by narrow boundaries of melted
additives as segregation layer [21,22]. The additives are included
Bi2O3, TiO2, Co3O4, Mn2O3, Sb2O3, V2O5, and Al2O3 which initially
mixed with a large amount of ZnO by physical or chemical methods
[23–25]. Thereafter the mixed final powder is compacted and
heated to occupy the grains boundaries [26–31]. In fact, the
melting points of the additives are less than the melting point of
ZnO by reason of they are melted to fill up the boundaries
[32,33]. In the layer, Bi2O3 is used as former and other additives are
subordinate which often included improving the ceramic electrical
properties [17,33–35]. For instance, TiO2 prevents the vaporization
of Bi2O3 and also facilitates ZnO grain growth; Sb2O3 stabilizes
the electrical properties and diminishes the leakage current of the
varistor during performance [17,29,30,36]. The other additive such
as Co3O4, Mn2O3, and Al2O3 are involved in the formation of
interfacial states which contribute to the highly non-ohmic
property (non-linear property) [18,37]. Obviously, some of the
additives make the property while others improve it. As a result, to
enhance the non-ohmic property, the additives should be
optimized in the starting powder of the ceramic.

In the case of the optimization, the method of ‘one variable at a
time’ has been widely used by varying one of the additives while
other parameters are kept constant while the additives are not
completely independent; it affects the electrical property of the
ceramic [36–39]. Moreover, the number of experiments is quite
high due to the variety of the additives which entail time
consumption and possible misinterpretation of the related results.
More than that, the different reactions including formation and
decomposition of spinels phase, kinetic of ZnO grain growth,
densification and evaporation of additives during the varistor
fabrication add to the complexity. Likewise, the importance of the
variable which uses to determine the level of initial additives is
impossible for the methods.

On the other side, the multivariate methods such as response
surface methodology (RSM) and artificial neural networks (ANNs)
contemplate the simultaneous effect of the input variables on the
output free of the mentioned complexity [40–44]. However, RSM
involves the complicated statistical calculation of fitting process as
well as the regression analysis while ANNs are free of the
mathematic functionalization [16,42,45,46]. ANNs have been
successfully used for modeling of productive processes such as
photodegradation of many environmental organic pollutants
including ethylene-diamine-tetra-acetic acid [47], nitrogen oxides
[48], nitrilotriacetic acid [49], C.I. Basic Red 46 [50], 2,4-
dihydroxybenzoic acid [51] and 4-nitrophenol [52]. To the best
of our knowledge, no study has shown the modeling of the
additives as input variables of the ceramic fabrication.

In this work, ANN was used to model the fabrication of
26 ceramic cores which used to prepare the same numbers of ZnO
based low voltage varistor. The amounts of the mentioned
additives were selected as input effective variables while the
calculated non-linear coefficients (alpha = a, from I = KV

a
) of the

experimental varistor’s electrical characterization were used as
outputs (responses). The modeling was carried out by four
particular training algorithm programs which included Quick
propagation (QP), Incremental back-propagation (IBP), Batch back-
propagation (BBP) and Levenberg–Marquardt (LM) back-propaga-
tion algorithm [53,54]. Thereafter, the produced models of the
algorithms are compared to find the optimized final model by the
root means squared error (RMSE), the coefficient of determination
(R2) and the percentage of absolute average deviation (AAD) of the
obtained models for each algorithm. The final model was used for
navigation of the fabrication to determine the narrow levels and
importance of the additives as well as predicting the points of the
additives that maximize the non-linearity of the varistors. The

predicted condition was experimentally prepared and electrically
validated to determine the protectiveness and sustainability of the
optimized varistor. The result of the validation was quite close to
the predicted condition.

Experiment

Materials and methods

The used chemicals were included ZnO (99.99%), Bi2O3

(99.975%), TiO2 (99.9%), Co3O4 (99.7%), Sb2O3 (99.6%), Mn3O4

(98%) and Al(NO3)3 (100%)which provided from Alfa Aesar for
preparation the ceramic starting powder. For fabricate a varistor,
the appropriate amount of each above chemicals was mixed and
grounded by dry form and then wet ball milled for 24 h to prepare
initial homogenous mixed powder. The mixed powder was
overnight dried by a hot oven at 100 8C then it was pressed into
pellet forms (10 mm in diameter and 0.70 mm thickness) at
200 Mpa by a uniaxial presser machine. The pellet was sintered for
holding time of 1 h at 1260 8C while the heating and cooling rate
were 5 8C/min by a box furnace (CMTS model HTS 1400)
[40]. Thereafter, the both sides of the sintered pellet as ceramic
core of the varistor were painted by silver electrodes to scan DC
current–voltage. The scan was carried out from 0 to 100 volts in
step size of 2.5 V by a Keithley source-meter 2400. The current–
voltage (I–V) was used to calculate the current density, J (mA/cm2)
and electrical field, E (V/mm) where ‘mm’ is the thickness of pellets
and ‘cm2’ is the surface of the painted silver electrodes. The ‘‘E’’ was
plotted vs.‘‘J’’ to calculate the alpha of the varistor at different
values according to the following equation [55]:

Alpha ¼ log J2 � log J1ð Þ
log E2 � log E1ð Þ (1)

where J1 was 0.1, J2 was 1 mA/cm2, E1 and E2 were measured at J1

and J2, respectively. The process was carried out for 26 varistors
with different mol% of starting powders in their ceramic core
(Table 1). The data of the varistors were randomly split up into two
sets as training and testing data sets (Table 1) using the option
available in NeuralPower software version 2.5 [56,57]. The training
and testing data were used to compute and ensure robustness of
the network parameters, respectively.

Theory of the modeling

ANNs are semi-empirical modeling methods which use the
actual processing condition and corresponding responses to
govern a network to avoid of the process complexity. The network
consists of input, hidden and output layers which are made of
appropriate connected units (nodes). The nodes are simple
artificial neurons which mimic a biological neural network. The
nodes of input layer are the effective variables and in output layer
is the responses. In the hidden layer, the number of nodes is
determined by learning process [58,59]. In the network, the nodes
are connected by multilayer normal feed-forward or feed-back
connection formula [53]. To qualify the network, the input layer
acts as distributor and sends data via the weights to the nodes of
second layer (hidden layer) [60]. The weighted data is saved as
processing nodes in the hidden layer and then transferred to the
output layer by particular transferred function [61,62]. Therefore,
the qualified data are passed into the input layer, propagated to
hidden layer and then transfers into the output layer of the
network by iterative procedure [63]. The iteration is an act of
repeating a process to approach a desire result. After appeared the
first input–output iteration result, the second period is processed
and so on. The network changes the weights in order to reduce the
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