ELSEVIER

Contents lists available at ScienceDirect

Journal of Industrial and Engineering Chemistry

journal homepage: www.elsevier.com/locate/jiec

Water-gas shift coupling with methanation over MO_x modified nanorod-NiO/ γ -Al₂O₃ catalysts

Shengli Ma a,b, Yisheng Tan a, Yizhuo Han a,*

ARTICLE INFO

Article history: Received 10 October 2010 Accepted 22 November 2010 Available online 13 May 2011

Keywords: NiO-MO $_x/\gamma$ -Al $_2$ O $_3$ catalysts Water-gas shift Methanation

ABSTRACT

Water-gas shift coupling with methanation was carried out over metal oxide modified nanorod-NiO/ γ -Al₂O₃ catalysts prepared by grind-mixing method in a continuous flow type fixed-bed reactor. The effects of promoter type, Co₃O₄ content, and reaction pressure were investigated. From the experimental results, Co₃O₄ modified nanorod-NiO/ γ -Al₂O₃ catalyst exhibited better activity than NiO–CuO/ γ -Al₂O₃ and NiO–Fe₂O₃/ γ -Al₂O₃ with molar ratio of CO/H₂/H₂O = 3:1:1 at 593 K and atmospheric pressure. The addition of 10 wt%Co₃O₄ to nanorod-NiO/ γ -Al₂O₃ catalyst was optimum. The CO conversion of 50 wt%NiO–10 wt%Co₃O₄/ γ -Al₂O₃ catalyst was 7.8% and the CH₄ selectivity reached 83.2%. The NiO–MO_x/ γ -Al₂O₃ catalysts were analyzed by X-ray diffraction, temperature programmed reduction and thermogravimetry techniques.

© 2011 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry.

1. Introduction

Natural gas has such advantages as high calorific value, complete combustion, smoke-free and slag-free. Furthermore, natural gas is less poisonousness and safer transportation than coal gas. As the main component of natural gas, methane has no C-C bond in its molecular structure, so it is a clean fuel as far as the burning characteristic is concerned. Therefore the application of methane is beneficial to both environmental protection and energy provision. The ratio of natural gas in energy consumption is increasing year by year in China. Many Chinese cities face natural gas shortage. Besides conventionally separated from natural gas, methane can be artificially synthesized by syngas derived from relatively abundant coal resources in China [1,2]. So coal-tonatural gas technology is being researched and developed [3,4]. And if methanation products are transported by the natural gas transmission pipeline, these can greatly reduce the transportation costs and relieve present transportation insufficient.

Since the hydrogenation of CO-to-methane was discovered by Paul Sabatier and Senderens in 1902, the technology of methanation has been widely developed and applied to gas-purification and substitute natural gas [5–7]. According to the stoichiometry of the methanation reaction, CO + $3H_2 \rightarrow CH_4 + H_2O$, that is often carried out in H_2 -rich gases [8–10]. However, the products of SCGP, Prenflo

and GSP gasification are usually CO-rich syngas [11]. Methanation of CO-rich syngas is attracting increasing attention. Ni-based catalysts are potentially used in methanation due to elevated selectivity and relatively cheaper price of Ni than noble metal [12]. Conventional Nibased catalysts are susceptible to deactivation by carbon deposition, and the growth of carbon filaments deposited during methanation of a CO-rich gas is observed by Kuijpers et al. using electron microscope [13]. Agrawal et al. reported that the methanation activity of a Ni/ Al₂O₃ catalyst in a mixture of 4% CO and 96% H₂ decreased by 10% (at most) per 24 h (T < 673 K) [14]. Knowing that deactivation of Nibased catalysts proceeded even at high H₂/CO ratios, Kuijpers et al. expected that catalysts that were exposed to gas mixtures having a H₂/CO ratio lower than 2 would lose their activity at a much higher rate. Kuijpers et al. [13] also found that even at low H₂/CO ratios the growth of carbon filaments could be avoided by the use of advanced catalysts in which substantially all Ni particles were bonded to the support by means of an interfacial oxidic layer. On the other hand, addition of water vapour to the reactant reduces the deposition of carbon according to $2C + 2H_2O \rightarrow CH_4 + CO_2$ or $C + 2H_2O \rightarrow CO_2 + 2H_2$ [15–17], and that also favors the water-gas shift (WGS) reaction, CO + $H_2O \rightarrow CO_2 + H_2$ [18]. The WGS and CO methanation reactions are both exothermic and calories produced by the former reaction can inhibit the methanation due to thermodynamic limit, but the catalytic WGS reaction is generally utilized to adjust the H₂/CO ratio. Therefore WGS coupling with methanation, $3CO + H_2 + H_2O \rightarrow CH_4 + 2CO_2$, will be an attractive technology. It is possible to produce substitute natural gas with better thermal efficiency and lower investments.

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China

^b Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China

^{*} Corresponding author. Tel.: +86 351 4049747; fax: +86 351 4041153. E-mail address: hanyz@sxicc.ac.cn (Y. Han).

Catalysts frequently used for WGS reaction are Fe–Cr series, Cu–Zn series and Co–Mo series [19]. Based on previous studies, a nanorod-Ni/ γ -Al₂O₃ catalyst prepared by grind-mixing method exhibited good activity for methanation [20]. In this study, metal oxide modified nanorod-NiO/ γ -Al₂O₃ catalysts have been developed by grind-mixing method. Such a combination requires a methanation catalyst which also catalyzes WGS reaction. The characterizations and catalytic performances of special Ni-based catalysts used in water-gas shift coupling with methanation tests are presented.

2. Experimental

2.1. Catalyst preparation

Appropriate amount of nickel acetate was dissolved in ethylene glycol (EG) at 393 K, maintained at the same temperature for 0.5 h. Then 0.2 mol/L Na₂CO₃ aqueous solution was slowly added to the Ni²⁺–EG solution, and the precipitate of Ni(OH)₂ was aged in the liquid for another 1 h. After filtration, it was washed thoroughly with distilled water. Then, the precipitate was dried at 393 K for 8 h and calcined in air at 773 K for 4 h. NiO with nanorod shape was obtained by the calcination of Ni(OH)₂ and designated as nanorod-NiO. CuO, Fe₂O₃ and Co₃O₄ were prepared by the same method. Then CuO, Fe₂O₃ and Co₃O₄ were grinded with adequate nanorod-NiO and γ -Al₂O₃ by weight, respectively. With this technique, the content of introduced Co₃O₄ (5%, 10%, 15%, 30% and 50%) could be controlled simply. NiO-MO_x/ γ -Al₂O₃ catalyst was shaped and broken into 20–40 mesh catalyst for reserve. CuO, Fe₂O₃ and Co₃O₄ were designated as MO_x.

2.2. Catalyst test

Water-gas shift coupling with methanation was carried out in a continuous flow type fixed-bed reactor. The catalyst (1.0 ml, 20–40 mesh) was diluted with ground quartz to prevent the overheating of the catalyst due to the exothermic reaction. The catalyst was reduced in a flow of H_2 (20 ml/min) for 1 h at 673 K before reaction, and tested at 593 K. H_2 , CO, CH $_4$ and CO $_2$ were monitored using a GC-4000A gas chromatograph (East & West Instruments, Inc., China) with a TDX-01 column and thermal conductive detector (TCD). CH $_4$ and other reaction products were analyzed by a GC-9A gas chromatograph (Shimadzu Co., Japan) equipped with a GDX-403 column and flame ionization detector (FID). The composition of reaction products was obtained by CH $_4$ normalization method.

2.3. Catalyst characterization

X-ray diffraction (XRD) patterns were conducted on a Bruker Advanced X-Ray Solutions/D8-Advance using Cu K α radiation. The anode was operated at 40 kV and 40 mA. The wavelength and the step size were 0.15406 nm and 0.02°/S. The 2θ angles were scanned from 10° to 80°.

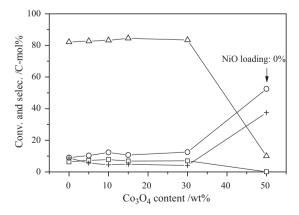
Temperature-programmed reduction of hydrogen (H_2 -TPR) was carried out in a fixed-bed reactor system equipped with a TCD detector. The sample (0.10 g) was pretreated at 673 K under an Ar flow (34 ml/min) for 2 h and cooled down to room temperature, then 10% H_2 in Ar was introduced into the flow system and the TPR spectra were recorded from room temperature to 973 K at temperature rising rate of 5.5 K/min.

The amount of carbon deposited on the catalyst was determined by TG analysis. The TG analysis was carried out in a NETZSCH STA 409 PC/PG thermoanalyzer. The sample was heated in flowing air from 308 K to 1323 K at a heating rate of 10 K/min.

3. Results and discussion

3.1. Effects of MO_x modified nanorod-NiO/ γ -Al₂O₃ catalysts

The activities over NiO-MO_x/ γ -Al₂O₃ catalysts with molar ratio of $CO/H_2/H_2O = 3:1:1$ at 593 K are presented in Table 1. Compared with nanorod-NiO/ γ -Al₂O₃, CO₂ selectivity all increases over Fe₂O₃, CuO and Co₃O₄ modified nanorod-NiO/γ-Al₂O₃. These show that the addition of Fe₂O₃, CuO or Co₃O₄ could enhance the water-gas shift reaction. However, over NiO-Fe₂O₃/ γ -Al₂O₃, CO conversion and CH₄ selectivity decease 1.6% and 13.1%, respectively. While over NiO-Co₃O₄/ γ -Al₂O₃, CO conversion and CH₄ selectivity are significantly improved 1.4% and 1.1%, respectively. The changes are intermediate over NiO-CuO/ γ -Al₂O₃. Therefore, the activities of catalysts for WGS coupling with methanation are in the order of $NiO-Co_3O_4/\gamma-Al_2O_3 > NiO-CuO/\gamma-Al_2O_3 > NiO/\gamma-Al_2O_3 > NiO-CuO/\gamma-Al_2O_3 > NiO Fe_2O_3/\gamma$ -Al₂O₃. The differences in activities among Fe_2O_3 , CuO and Co_3O_4 modified nanorod-NiO/ γ -Al₂O₃ catalysts are possibly within the range of experimental error, but the order is justified by repeatability of experiments. Furthermore, from Fig. 1, additions of 5–30 wt%Co₃O₄ to nanorod-NiO/γ-Al₂O₃ catalyst all improves CO conversion and CH₄ selectivity in comparison with nanorod-NiO/ γ-Al₂O₃ catalyst. These also indicate that WGS can cooperate properly with methanation over NiO-Co₃O₄/ γ -Al₂O₃ catalyst.


3.2. Effects of Co_3O_4 content on the performance of NiO– Co_3O_4/γ -Al₂O₃

In order to increase the CO conversion and keep high CH_4 selectivity, the effects of Co_3O_4 percentage composition for watergas shift coupling with methanation are investigated and depict in Fig. 1. Increasing Co_3O_4 content, water-gas shift is effective and CO_2 selectivity increases, with CO conversion and CH_4 selectivity being slightly improved. The addition of $10 \text{ wt}\%Co_3O_4$ is optimum.

Table 1 Water-gas shift coupling with methanation over NiO-MO $_{x}/\gamma$ -Al $_{2}O_{3}$ catalysts.

Catalyst	CO conversion (C-mol%)	Selectivity (C-mol%)		
		CH ₄	CO_2	Other H.C.
NiO-Fe ₂ O ₃ / γ -Al ₂ O ₃	4.8	69.0	18.1	12.9
$NiO-CuO/\gamma-Al_2O_3$	7.2	82.2	14.5	3.3
$NiO-Co_3O_4/\gamma-Al_2O_3$	7.8	83.2	12.3	4.5
NiO/γ - Al_2O_3	6.4	82.1	9.1	8.8

Reaction conditions: $n(CO):n(H_2):n(H_2O) = 3:1:1$, T = 593 K, atmospheric pressure, GHSV(CO+H₂)=11940 h⁻¹, LHSV(H₂O)=0.6 h⁻¹. NiO loading: 50 wt%, MO_x: 10 wt%.

Fig. 1. Water-gas shift coupling with methanation over different Co_3O_4 contents modified 50 wt%NiO/ γ -Al₂O₃ catalyst: \square , CO conversion; selectivity for \triangle , CH₄; \bigcirc , CO₂, +, other H.C. *Reaction conditions*: $n(CO):n(H_2):n(H_2O) = 3:1:1$, T = 593 K, atmospheric pressure, GHSV(CO + H₂) = 11940 h⁻¹, LHSV(H₂O) = 0.6 h⁻¹.

Download English Version:

https://daneshyari.com/en/article/228517

Download Persian Version:

https://daneshyari.com/article/228517

<u>Daneshyari.com</u>