ORIGINAL ARTICLE

Synthesis of [9, 10-dihydro-9-(4-methylaminobutyl)-9, 10-propanoanthracene] using Diels-Alder cycloaddition

Adel Al-Saeedi ${ }^{\text {a,b }}$, Usama Karama ${ }^{\mathbf{a}}$, Mazahar Farooqui ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Chemistry, College of Science, King Saud University, Saudi Arabia
${ }^{\mathrm{b}}$ Post Graduate and Research Center, Maulana Azad College, Aurangabad, MS, India

Received 6 September 2012; accepted 15 March 2013
Available online 4 April 2013

KEYWORDS

Synthesis;
Cycloaddition;
Homolog;
Maprotiline;
Antidepressant

Abstract

The synthesis of [9, 10-dihydro-9-(4-methylaminobutyl)-9, 10-propanoanthracene] (2) as a homolog of the antidepressant [9, 10-dihydro-9-(3-methylaminopropyl)-9, 10-ethanoanthracene] (1) is described in the present paper. The key intermediate [9,10 -dihydro (4-pentyl)- 9,10 - propan-oanthracene-12-one] (7) is successfully synthesized by using the reaction of α-bromoacrolein with 9-pent-4-enyl-anthracene (4) followed by ring expansion and samarium diiodide deoxygenation. © 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There are some compounds derived from anthracene which have biological activity, such as Maprotiline (Ludiomil*) that has been synthesized and developed into a clinically useful drug for the treatment of schizophrenia and as an antidepressant by the Ciba-Geigy research group in Switzerland (Fig. 1). The key step was the Diels-Alder addition of ethylene under high pressure leading to the addition across the 9,10 positions and the formation of the central 2, 2, 2-bicyclooctyl moiety (Wilhelm and Schmidt, 1969).

[^0]

The synthesis of homologies homobenzoctamine and homomaprotiline was done by using [4+3] cycloaddition of tetrabromoacetone with vinyl and allyl anthracene (Hoffmann and Karama, 1992). The synthesis of bishomobenzoctamine by using [4 +2] cycloaddition of allyl anthracene with α-bromoacroline and $[3+4]$ cycloaddition of allyl anthracene with tetrabromoacetone was done (Karama et al., 2010a,b), but the biological activities of these compounds were not published yet.

In the present work we outline a simple method and suitable route to the corresponding Bishomomaprotiline (2) by using the Diels-Alder reaction.

2. Results and discussion

Here we have used seven-steps for the synthesis of Bishomomaprotiline, the key intermediate step is [9,10-dihydro(4-pen-tyl)-9,10-propano anthracene-12-one] (7) which is synthesized in three steps starting from 9-pent-4-enyl-anthracene (4) which is obtained by the reaction of anthrone (3) with 5-Bromo-1-

Maprotiline
(1)

Bishomomaprotiline
(2)

Figure 1 Maprotiline and Bishomomaprotiline.
pentene and magnesium. It is followed by dehydration by using $\mathrm{P}_{4} \mathrm{O}_{10}$ (Fieser and Heymann, 1942; Willner and Halpern, 1979; Coudane, 1981). The IR spectrum of compound (4) exhibits an absorption band in the range of $3049-2853 \mathrm{~cm}^{-1}$ for $\mathrm{C}-\mathrm{H}$ stretching aroma and shows a peak in the range of $1636-1445 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{C}$ stretching, and the absorption band is observed at $733 \mathrm{~cm}^{-1}$ for $\mathrm{C}-\mathrm{H}$ bonding. The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound exhibits a characteristic quintet at δ 1.92 ppm for two protons, $\mathrm{H}^{\prime}{ }^{\prime}$ and exhibits a quartet at δ 2.33 ppm for two protons, H^{\prime}. The mass spectrum of this compound reveals the molecular ion peak at $\mathrm{m} / \mathrm{z} 246$ which resembles the formula weight 246.140851 .

The Diels-Alder reaction between compound (4) and α bromoacroline afforded the cycloadduct (5) Phutdhawong et al., 2002; Atherton and Jones, 2003; Dhaneshwar Singh, 2010a,b, and this compound was characterized by spectral analysis. IR spectra shows a strong peak at $1717 \mathrm{~cm}^{-1}$ for $(\mathrm{C}=\mathrm{O})$.The ${ }^{1} \mathrm{H}$ NMR exhibits a characteristic triplet at δ 4.28 ppm for one proton, H 10 and shows a characteristic singlet at $\delta 9.57 \mathrm{ppm}$ for (CHO). The ${ }^{13} \mathrm{C}$ NMR shows one peak in $\delta 191.14 \mathrm{ppm}$ for carbon $(\mathrm{C}=\mathrm{O})$. The mass spectrum of this compound reveals the molecular ion peak at $m / z 380$ which resembles the formula weight 380.077590 .

Treatment of compound (5) with 1 M aq. NaOH resulted in transformation into the ring expanded α-hydroxy ketone (6) which is confirmed by the IR spectra. A broad peak in IR in the range $3513,3457 \mathrm{~cm}^{-1}$ is seen for $\mathrm{O}-\mathrm{H}$ stretching and a strong peak at $1701 \mathrm{~cm}^{-1}$ is seen for $\mathrm{C}=\mathrm{O}$. The ${ }^{13} \mathrm{C}$ NMR exhibits one peak at $\delta 208.31 \mathrm{ppm}$ for carbon $(\mathrm{C}=\mathrm{O})$. The mass spectrum of this compound confirmed the molecular ion peak at $m / z 318$ which resembles the formula weight 318.161976.

Deoxygenation of compound (6) by samarium diiodide led to the desired key intermediate ketone (7) Karama et al., 2010a; Asano et al., 2007, the synthesis of parent ketone (7) is confirmed by using spectral analysis. The IR spectra appear as a strong peak at $1694 \mathrm{~cm}^{-1}$ for $(\mathrm{C}=\mathrm{O})$ and the disappearance of a broad peak in the range of $3513,3457 \mathrm{~cm}^{-1}$ for $\mathrm{O}-\mathrm{H}$ stretching. The mass spectrum is confirmed for this compound for which there appeared a molecular ion peak at m / z 302 which resembles the formula weight 302.167066 .

Wolff-Kishner reduction of the ketone 7, gives the tetracyclic hydrocarbon 8 Kishner, 1911, which is confirmed by spectral analysis. In the IR spectrum the disappearance a strong peak at $1694 \mathrm{~cm}^{-1}$ is seen for $\mathrm{C}=\mathrm{O} .{ }^{13} \mathrm{C}$ NMR disappearance of a singlet peak at $\delta 209.19 \mathrm{ppm}$ for $\mathrm{C}=\mathrm{O}$ is

(3)
a-bromoacrolein, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 48 h

(7)
$\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ;$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}, 4$ h, r.t.

(2)
(9)

Scheme 1 Synthesis of Bishomomaprotiline (2) from anthrone.
indicative of transference of carbonyl to methylene. The mass spectrum for this compound confirmed the molecular ion peak at $m / z 288$ which resembles the formula weight 288.187801.

Ozonolysis of tetracyclic hydrocarbon 8 gives the crystalline aldehyde 9.The IR spectrum shows a strong peak at $1726 \mathrm{~cm}^{-1}$ for aldehyde $(\mathrm{C}=\mathrm{O})$. The ${ }^{1} \mathrm{H}$ NMR shows a characteristic singlet at $\delta 10.88 \mathrm{ppm}$ for (CHO). The ${ }^{13} \mathrm{C}$ NMR shows a peak at $\delta 202.08 \mathrm{ppm}$ for carbon (CHO).The mass spectrum of this compound confirmed the molecular ion peak at $m / z 290$ which resembles the formula weight 290.167066 .

Reductive amination of the aldehyde (9) using a combination of a commercially available solution of methylamine in methanol, titanium (IV) isopropoxide and sodium borohydride (Kumpaty et al., 2003), afforded the Bishomomaprotiline (2).The synthesis of the target compound is confirmed by spectral analysis. The IR spectrum shows one peak at $3410 \mathrm{~cm}^{-1}$ for ($\mathrm{N}-\mathrm{H}$ secondary amine) with

https://daneshyari.com/en/article/229370

Download Persian Version:
https://daneshyari.com/article/229370

Daneshyari.com

[^0]: * Corresponding author. Tel.: +91 9422214785/+917385554016. E-mail address: mazahar_64@rediffmail.com (M. Farooqui).
 Peer review under responsibility of King Saud University.

