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a  b  s  t  r  a  c  t

A  ternary  critical  end line  (T-CEL)  is a  line  of  Ternary  critical  end  points  (T-CEPs).  T-CELs  provide  key
information  on  the  phase  behavior  of ternary  systems,  i.e.,  they  are  boundaries  for  the  ternary  three-
phase  equilibrium.  A ternary  system  may  have  several  T-CELs.  It is  desirable  to  have  available  a robust
algorithm  for  computing  complete  ternary  CELs,  thus  minimizing  the  need  for  user  intervention.  It  is  also
important  to  reliably  detect  the key  points  where  T-CELs  originate  or terminate.  In  this  work,  we  propose
to  apply  a numerical  continuation  method  (NCM)  for the fast  and  robust  computation  of T-CELs.  We
present  calculated  T-CELs  for highly  asymmetric  systems  showing  the  topologies  that  these  lines  define.
We consider  a model  of the  equation  of  state (EOS) type  and  use  it over  wide  ranges  of  conditions.  Such
ranges  are  much  wider  than  those  previously  considered  in  the  literature.  Our main  conclusion  is  that
models  for  the  fluid  phase  equilibria  of ternary  systems  may  predict,  for  a given  system,  several  T-CELs  of
varying types  and topologies.  Some  of such  topologies  have  been  observed  for  the  first  time  in this  work.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The computation of the fluid phase equilibrium behavior of
binary and ternary systems is of great importance to characterize
the behavior of models and their specified parameter values, as a
necessary step to intend the reproduction of experimental infor-
mation by the chosen model. Such characterization is best carried
out when focusing on key equilibrium lines and points.

The key lines and points for the fluid phase equilibria of binary
systems are those identified by Scott and Van Konynenburg in 1970
[1], i.e., critical, azeotropic and liquid–liquid–vapor lines, critical
end points and a variety of end points for azeotropic lines. The men-
tioned lines are actually non-linear and would therefore be named
“curves” by a mathematician (ref [2], p. 114). In other words, criti-
cal, azeotropic and liquid–liquid–vapor lines are understood to be
curves [2]. “Only tie lines are straight lines” [2].

In ternary systems, an important type of, in a way, key point, is
the (ternary) critical end point (T-CEP). At a T-CEP a critical fluid
phase is at equilibrium with a non-critical fluid phase, being the
system made of three components. A T-CEP is the termination of a

∗ Corresponding author.
E-mail addresses: mzabaloy@plapiqui.edu.ar, marcelo.zabaloy@yahoo.com.ar

(M.S. Zabaloy).

ternary three-phase equilibrium line. This line may  be, e.g., isother-
mal  or isobaric.

Appendix C presents a significant part of the phenomenology
relevant to this work for the fluid phase behavior of ternary mix-
tures. Three and four-phase equilibria, critical lines and T-CEPs are
represented together with other phase equilibrium objects in the
familiar Gibbs triangles. Appendix C is mostly based on the com-
prehensive review by Adrian et al. [3]. Notice that after section 6,
both, a list of acronyms and a list of symbols are provided.

For computing a T-CEP it is necessary to add, to the critical
conditions, the isofugacity conditions between the critical and non-
critical phases (Appendix A). The resulting system of equations (SE)
has only one degree of freedom. Therefore, the T-CEP conditions
define one or more continuous lines (or hyper-lines) of T-CEPs for a
given ternary system, model, and parameter values. A proper name
for a line of T-CEPs is “ternary critical end line” (T-CEL). Notice that
a T-CEL is a T-CEP locus. A T-CEL (actually a hyper-line) is a charac-
teristic univariant line of a ternary system. At a T-CEL, a three-phase
hyper-surface and a critical hyper-surface meet. A T-CEL is indeed
a key line whose computation makes possible to facilitate the sys-
tematic evaluation of a combination of a chosen model and a set
of specified values for its parameters. A ternary system may  have
from none to several T-CELs. As it is the case for binary univariant
lines, a ternary critical end line (or hyper-line) is understood to be
a curve (or hyper-curve) despite the use of the word “line”.
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List of symbols

f̂i fugacity of component i in the mixture
I identity matrix
JF(15) Jacobian matrix of vector function F(15)

M*
ij element of matrix M*

ni number of moles of component i (ith element of
vector n)

n number of moles vector
P absolute pressure
P* logarithmically scaled P
R universal gas constant
s distance parameter
Sspec value assigned to the specified variable
T absolute temperature
T* logarithmically scaled T
tpd tangent plane distance function
ui ith element of eigenvector u
u eigenvector of matrix M*

v0 molar volume of the critical phase
v0* logarithmically scaled v0

V* logarithmically scaled V
Vx molar volume of the non-critical phase
V∗x logarithmically scaled Vx

xi mole fraction of component i in the non-critical
phase

x∗
i

logarithmically scaled xi
x mole fraction vector, with elements xi.
zi mole fraction of component i in the critical phase
z∗
i

logarithmically scaled zi
z mole fraction vector, with elements zi.
�Sspec change in parameter Sspec

� eigenvalue associated to the eigenvector u
�s specified variable
�0
next point initial estimate for the vector � of the next point

of the T-CEL
�conv.point vector � of a converged point of a T-CEL

List of Acronyms
15D having fifteen dimensions
2D having two dimensions
3D having three dimensions
4PE four phase equilibrium
B-CEP binary critical end point
EOS equation of state
inf-T-CEP T-CEP where one of the components is at infinite

dilution
NCM numerical continuation method
P-CP pure (compound) critical point
PR-EOS Peng-Robinson equation of state
SRK-EOS Sove-Redlich-Kwong equation of state
T-4PL ternary four phase (equilibrium) line
T-CEL ternary critical end line
T-CEP ternary critical end point
T-CEP-4PL ternary critical end point of a four phase line
T-TCEP ternary tricritical end point

It is worth noting that we use the word “hyper-line” to identify a
continuous set of points, each characterized by several coordinates,
being defined, each point, by a single degree of freedom. A hyper-
line has several projections, i.e., a hyper-line has an associated set
of elementary curves that can be represented in a corresponding
set of 2D diagrams. Besides, in this work we use the word “hyper-
surface” to identify a continuous set of points, each characterized
by several coordinates, being defined, each point, by two  degrees

of freedom. A hyper-surface has an associated set of elementary
surfaces: they are the projections of the hyper-surface and can be
represented in a corresponding set of 3D diagrams. Notice that the
prefix “hyper” means in this work “several (more than three) coor-
dinates”. Levelt-Sengers ([2], p. 46) has referred to ternary “critical
surfaces”, while Gauter et al. [4] have considered both, critical and
three-phase ternary “surfaces”. In spite of the glossary of refs [2] and
[4], we often prefer to add the prefix “hyper” to the word “surface”
(or “line”) to bear in mind the multidimensionality of the thermo-
dynamic objects of interest. For instance, on page 135 of ref [4],
a ternary (CO2 + 1-octanol + hexadecane) “critical surface” is rep-
resented in the 3D space of variables pressure, temperature and
solvent-free mass fraction of a component (Fig. 7 of ref [4]). In such
figure, the pressure is the dependent variable. However, an anal-
ogous plot would exist if the critical pressure were exchanged by,
e.g., the density of the critical phase. Thus, several 3D ternary criti-
cal surfaces are all contained within a single critical hyper-surface.
This justifies the use of the prefix “hyper”. Actually, Fig. 7 of ref [4]
shows only one of the several possible 3D projections of a critical
hyper-surface of system CO2 + 1-octanol + hexadecane.

Di Andreth [5] studied the ternary system CO2 + water + 2-
propanol, and developed a couple of algorithms: one for computing
ternary three-phase equilibria, and another one for calculating
ternary four-phase equilibria. Di Andreth [5] showed T-CELs, com-
puted with the Peng-Robinson EOS [PR-EOS, [6]], but did not
provide detailed information on the calculation procedure for
T-CEPs. According to the phase rule, a ternary three-phase equi-
librium has two  degrees of freedom (ref [2], p. 46). When one of
them is spent, e.g., by setting a constant temperature, a three-phase
equilibrium hyper-line, i.e., a continuous set of three-phase equilib-
ria, becomes defined, e.g., an isothermal three-phase hyper-line. It
seems that, in ref [5], each T-CEP of a given T-CEL would be identi-
fied while calculating a three-phase equilibrium hyper-line when
verifying the absence of convergence. In other words, and in con-
trast with this work, Di Andreth [5] did not compute T-CEPs in a
direct way.

Gregorowicz and de Loos [7] have presented calculated
T-CELs for methane + propane + n-eicosane and ethane + propane + n-
eicosane. They have suggested to start off by computing the critical
end points of the binary subsystems (B-CEPs), and next to use such
information to initialize the computation of a number of T-CEPs
equal to the number of B-CEPs. However, the authors have not
provided details on how to initialize the T-CEP variables that do
not exist in a B-CEP, which is located very close to the T-CEP to be
computed. Such variables are the concentrations of the third com-
ponent in the two equilibrium phases of the T-CEP. A T-CEP located
very close to a B-CEP is an infinite dilution T-CEP, since the con-
centration of one of the three components, in either equilibrium
phase, tends to zero. Besides, Gregorowicz and de Loos [7] have
suggested to set the temperature as the independent variable in
the computation of T-CEPs. Such choice might not be a convenient
one if the T-CEL, to which the T-CEPs being computed belong, has
a highly non-linear behavior. Specifying a value for temperature is
not appropriate in parts of T-CELs where the temperature remains
practically constant, or it changes slowly [e.g., T-CEL(d) in Fig. 5].

Adrian et al. [8] experimentally studied, at varying temperatures
and pressures, three-phase and four-phase equilibria, and CEPs, for
the ternary system CO2 + H2O + 1-propanol.  They [8] presented sev-
eral qualitative diagrams to explain the observed phase behavior.
Besides, they [8] showed quantitative diagrams which present both,
experimental data and modeling results. These phase diagrams
include typical triangular diagrams at set temperature and pres-
sure, and pressure versus mole fraction (or density) projections of
three-phase equilibrium lines. Adrian et al. [8] did not describe the
calculation algorithms that they used to generate their modeling
results.
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