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a  b  s  t  r  a  c  t

A  comprehensive  understanding  of vapor  liquid  equilibrium  (VLE)  data is one  of  the  most  important  infor-
mation  for designing  and  modeling  of  process  equipment.  Because,  it is  not  always  possible  to completely
carry  out  experiments  at  all  of the  possible  operational  temperatures  and  pressures  range,  generalized
thermodynamic  models,  e.g. equations  of state  are  constructed  for computing  of required  VLE  data.  In
this work,  artificial  neural  network  (ANN)  was  used  to derive  predictive  models  of  bubble  point  pressure
and  vapor  phase  composition  of  binary  ethanol  (C2H5OH)  mixtures.  In the neural  network  model,  it is
assumed  that  the  considered  VLE  data  depend  on  critical  properties,  acentric  factor,  normal  boiling  point,
liquid phase  composition  of the  solutes,  and  temperature.  The  proposed  ANN model  has  been  constructed
and  trained  with  VLE  experimental  data  of nine  different  binary  systems  containing  C2H5OH  collected
from  various  literatures.  Optimal  configuration  of  the  ANN  model  has  been  determined  using minimizing
the  average  absolute  relative  deviation  percent  (%AARD),  mean  square  errors  (MSE)  and  the  maximizing
the  correlation  coefficient  (R2) between  observed  and  predicted  VLE  data  with  the  ANN  model.  By  using
this  procedure  a two-layer  ANN  model  with  twenty-three  hidden  neuron  has  been found  as  an  optimal
topology.  The  accuracy  of  our  optimal  two  layers  ANN  model  has  been  compared  with  the  Peng–Robinson
cubic  equation  combined  with  Wong–Sandler  (WS)  mixing  rules  including  a  Van  Laar  (VL)  model  for  the
excess  Gibbs  free energy.  Comparison  with  available  literatures  data  and  Peng–Robinson  equation  of  state
confirm  that  the  present  ANN  model  is  more  accurate  and  superior  than  the  other  published  works.  The
sensitivity  errors  analysis  clarify  that  our ANN  model  could  predict  vapor  phase  composition  and  bubble
point  pressure  of  all of the  nine  binary  ethanol  systems  with  %AARD  of 1.52%  and  2.59%  respectively.  The
study  demonstrates  that  the neural  network  model  is a good  alternative  method  for  the  estimation  of
VLE properties  of the binary  system  containing  C2H5OH.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The phase behavior of the binary mixtures containing ethanol
has received great interests from academia and industry in
the last few decades. Thermodynamic and phase behavior of
ethanol + congeners (compounds which different from ethanol)
mixtures is essential to design, simulation and control of related
equipment units such as distillation in the alcoholic beverage pro-
duction processes [1]. In addition, some of the congener substances
constitute the aroma part of the distilled product and therefore
their concentrations are important parameters [2–4]. While the
concentration of congeners substances provides flavor and aroma
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characteristics to the final distilled spirit and also because their
concentrations are regulated by law, the precise modeling of the
vapor phase concentration of these materials have attracted popu-
lar attentions [5].

Widely used technique to predict VLE properties such as
bubble point pressure and vapor phase concentration of the
ethanol–congeners system is the combination of an equation
of state (EOS) with a model for the excess Gibbs free energy.
Faúndez et al. [3] analyzed vapor–liquid equilibrium in binary
ethanol + congeners mixtures found in alcoholic distillation by
using the Peng–Robinson EOS [6] and one of the most popu-
lar modern mixing rules, i.e. Wong–Sandler model [7,8]. They
have used Van Laar model [3] for the Gibbs excess energy [8] in
Wong–Sandler mixing rules. ANN model is another attractive tech-
nique which has been proposed to predict VLE properties [9]. The
greatest advantage of an ANN is eliminating the complex equations,
and replacing them with popular transfer functions [10]. Recently,
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Lashkarbolooki et al. [9] utilized ANN model for prediction of solid
solubilities in supercritical carbon dioxide and compared their ANN
results with Peng–Robinson and Soave–Redlich–Kwong EOSs. They
have highlighted the advantages of ANN over the combination of
an EOS with different mixing rules for estimating the VLE proper-
ties [9]. Rohani et al. reported that ANN model can be considered
as a suitable tool for estimation of phase equilibria of complex
systems [10]. Mohanty designed an ANN model to simulate the
phase behavior of binary systems including: carbon dioxide–ethyl
caproate, ethyl caprylate and ethyl caprate in the temperature
range of 308.2–328.2 K and pressure range from 1.6 to 9.2 MPa
[11]. Mohanty compared the results of developed ANN model by
Peng–Robinson and Soave–Redlich–Kwong equations of state [12].
In present work, a feed-forward back-propagation MLP network
with only one hidden layer has been used to predict VLE properties
of nine different binary ethanol mixtures. Predictions of ANN model
were compared with available literature data and results obtained
using combination of EOS and Wong–Sandler mixing rule [3,9].

2. Artificial neural network

Deriving reliable and precise analytical relation that can explain
highly non-linear phenomena and correlate associated indepen-
dent and dependent variables of realistic or synthetic processes
are often difficult and sometimes impossible. Hence popularity of
black box models which are generally based on artificial intelli-
gence techniques such as ANNs, have been increased for simulating
of complex process behavior in areas where precise analytical or
semi-experimental correlation are unavailable. ANN systems are
non-linear learning mathematical method which widely utilized
for data processing, process analysis and control, fault diagnosis and
pattern recognition [13]. These non-linear learning mathematical
models were designed in the second half of the twentieth century
by simulation of human brain procedures [13].

MLPNNs with totally feed-forward connections and back-
propagation learning algorithm are among the most widely used
ANNs models which are being extensively used in various fields
of science and engineering up to now [14,15]. These networks are
capable to correlate inputs and outputs of most non-linear multi-
variable phenomena with any complexity or in situation that no
available relation at all. These networks composed of a large num-
ber of key processing elements that are connected together in a
specified manner according to the type of the network.

Modeling based on ANN has been done in a way which does
not require exact formulation of relations between input and out-
put information or assumption about the parametric nature of the
related parameters. Using of ANNs is increased because of their
non-linearity, massive parallel connections, multiple input-output
variables, non-requirement of assumption about the functional
form of the model and also tolerant noisy data [13].

Each ANN models consist of a number of simple processing
units that are connected together in a specified manner accord-
ing to the type of the network. These processing units have been
inspired from biological neurons, and are called neurons. Input
signals always fed to input layer and then transfer to neurons in
the hidden layers and output one, respectively. It can be said that
the neurons in the output layer provide the results of MLPNN. The
output of a neuron is computed from the Eq. (1):

nj = f

(
N∑

r=1

wjrxr + bj

)
(1)

As can be found from Eq. (1), the input signals to each neuron
are weakened or strengthen through their multiplication to weight
coefficients (wjr). The biases (bj) are activation thresholds that are
added to the production of inputs (xr) and their particular weight

coefficients. The net output of each neuron passes through a func-
tion which is called activation or transfer function (f) of the neuron.
Different types of transfer functions have been proposed for artifi-
cial neural networks such as linear, logarithmic sigmoid, hyperbolic
tangent sigmoid, and radial basis transfer functions [13]. In the
present study, the following function is utilized as the transfer
functions in input as well as output layer:

f (x) = 1
1 + exp(−x)

(2)

The correlation indicated by Eq. (2) is usually called log-sigmoid
transfer functions. This transfer function compress input data into
intervals [0 1]. The non-linearity, continuity and differentiability
nature of aforementioned function allow the neuromorphic model
to relate input and output data with any complexity. The differ-
entiability of the transfer functions is important characteristic,
which allows the gradient-based training algorithms to update the
weights and biases.

2.1. Selection of optimum configuration

The most important issues in developing of any ANN model are
specifying the optimal number of hidden layers and the number of
neurons per each layer. Although back-propagation can be applied
to networks with any number of layers it has been mathematically
proven that any multivariable function with arbitrary discontinu-
ities can be approximated to desired accuracy using the MLPNN
with only one hidden layer provided non-linear transfer functions
in its hidden units, i.e. sigmoid [16–19]. Cybenko substantiated
his theory using the Hahn–Banach theorem [20] while the proof
of Hornik et al. [16] is based on the Stone–Weierstrass theorem
[20], and Funahashi [17] proved the same problem using an inte-
gral formula. Xiang et al. [21] proof is most elegant and simple, and
is derived from a piecewise-linear approximation of the sigmoidal
activation function. The appropriate number of hidden neurons for
approximating a target function is not known in general and tra-
ditionally determines by trial and error procedure. Evaluation the
optimum number of hidden units is complex task because there is
considerable dependence on three issues: (1) complexity of corre-
lation between input and output data being attacked using a neural
network, (2) the number of available training and test data, and (3)
the severity of noise imposed on the data sets [22]. A low number
of neurons are not powerful enough to reach to the desired error
and often lead to under-fitting, while a large number of neurons
have a very expensive computation and may result in over-fitting
[23].

In analogy to curve fitting, smaller networks that use fewer
parameters usually have better generalization capability. During
training an MLP, the optimal number of neurons in the hidden lay-
ers is unknown and is estimated usually by trial-and-error. Two
strategies, namely, network pruning and network growing, are
used to determine the size of the hidden layers [22].

To avoid over-fitting it is necessary that the flexibility of a devel-
oped ANN reduced [24]. Flexibility is directly related to the number
of hidden layer and hidden neurons. Increasing the number of net-
work parameters (weights) lead to increases the flexibility of ANN
as well. In the other words, the larger number of weights causes
the larger flexibility.

Some researchers have proposed penalties for choosing the
number of nodes in the hidden layer [25,26]. Lippmann has proven
that the numbers of MLP  hidden nodes are often function of number
of independent variables [27]. Mehrotra et al., suggest the optimiza-
tion approach to estimate the number of hidden nodes required to
solve a classification problem in -̂dimensional input space [28].
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