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a b s t r a c t

A liberation simulation is outlined based on image analysis of mineral texture images such as those pro-
duced by automated mineralogical analysis. The method relies on a freeware image analysis programme,
Fiji, and uses Voronoi tessellations to represent a fragmentation pattern. This pattern is superimposed
onto a mineral texture image and the mineralogical composition of each tile is analysed separately to
produce a liberation spectrum.
A comparison is presented between actual and simulated data in terms of liberation, shape and size

distribution. The correlation (r2) of simulated to measured liberation data exceeded 0.98 for all minerals
assessed but for optimum confidence further validation is required over a larger size range. Comparing
real and simulated particle shape gave a correlation exceeding 0.95, and it is shown the particle size dis-
tribution of Voronoi patterns can accurately reproduce that of scalped feeds (i.e. a narrow size fraction) of
comminution products. Repeatability of the process is shown to be dependent on particle size, but overall
is very good. To demonstrate potential applications of this analysis method, quartz liberation spectra for
three granites of different grain sizes are included and discussed, and a simulated grade–recovery curves
for an Au-bearing pyrite is demonstrated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recovery of valuable minerals necessitates their detachment
from gangue minerals of no economic value, i.e. mineral liberation
is required. This makes liberation the crucial variable in governing
the probability of a particle being recovered into a concentrate or
rejected into tailings during downstream beneficiation (Wills,
2011), and therefore it is the most important goal of the comminu-
tion process. Consequently Powell and Morrison (2007) clearly
identify incorporation of liberation into comminution modelling
as the ‘holy grail’ for this field of research.

The first notable attempt at quantitative prediction and descrip-
tion of liberation was by Gaudin (1939). He superimposed cubes
(also known as a tessellation, i.e. an interlocking pattern of ‘tiles’)
as a fracture pattern onto an ore texture, and then analysed the
ore mineral content for each of the cubes. Since the seminal work
by Gaudin, a considerable number of methods have been formu-
lated to describe liberation, often following the same lines. The
approach by King (1979) involves determination of mineral com-
position of a thin section along a linear intersect, followed by ‘frag-
mentation’ of this intersect according to a random breakage

tessellation. On the basis of this, King (1979) derived an equation
that predicts liberation along this intersect as a function of the
particle size distribution.

Since its inception by King (1979), liberation analysis has been
much refined, enabled both by vast increases in processing power
and more readily available digital textural images (see Bonifazi
and Massacci (1995), Matos et al. (1996), Guimarães and Durão
(2003, 2007), Evans and Bradshaw (2013), Djordjevic (2013),
Evans et al. (2013), Resabal et al. (2014), Wightman et al. (2014)
and Wang (2015) for examples). Bonifazi and Massacci (1995) pre-
sented a digital version of the Gaudin liberation assessment, and
demonstrated the potential to extract grade–recovery curves from
images. Evans (2010) used a three-step approach to characterise a
micro-texture, simulatebreakageusinggeometric patterns and then
simulate flotation behaviour based on surface properties of the pro-
geny particles. Using thismethod, Evans (2010) demonstrated a link
between chalcopyrite surface exposure on modelled particles and
flotation recovery, though it was found the model did not account
successfully for variation in flotation kinetics of chalcopyrite (i.e.
fast-floating vs. slow-floating forms of chalcopyrite). Moreover, in
their work liberation predictions were consistently lower than
observed values, indicating some degree of selective fragmentation
had occurred. Another approach was taken by Djordjevic (2013),
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who used Object-Oriented Finite (OOF) element codes to simulate
rock fragmentation. They populated a digitised rock texture image
with strength data obtained through micro-indentation and then
modelled liberation through slow compression. On the basis of this,
Djordjevic (2013) concluded that textural parameters of valuable
minerals were more important for fragmentation outcomes than
their geomechanical properties. Probably most similar to the pre-
sented work is the work by Guimarães and Durão (2007; following
initial work presented in 2003 by the same authors), who also used
Voronoi patterns to simulate fragmentation through discriminatory
size reduction. This work used a programmewritten specifically for
producing Voronoi patterns (termed cellular automata in their
paper) to reproduce size reductions and progeny particle composi-
tion produced through batch ball milling. The methodology pre-
sented by Guimarães and Durão (2007) is similar to that used in
this paper, though they focusedmoreon generatingparticle size dis-
tributions and less on liberation. The work presented in this paper
can be considered an evolution of the methodology first described
by Guimarães and Durão (2007).

Aside fromtexture-based liberation analysis, first-principlemod-
els of liberationhavealsobeen formulated, approaching thequestion
from amathematical perspective. Examples of these models include
a combined size reduction–liberation model for a batch mill
AndrewsandMika (1975), extensionof thepopulationbalanceequa-
tion to incorporate liberation (Herbst et al., 1988), morphological
solutions for Poisson polyhedra and Boolean textures with Poisson
polyhedra (Barbery, 1992),modellingbasedonadispersionequation
(Wei and Gay, 1999) and probability–entropy modelling of libera-
tion (Gay, 2004). More recently, Hilden (2014) demonstrated a
method to simulate multi-mineral rock textures for liberation anal-
ysis. Many of these models possess a mathematical elegance, but
often suffer from limitations due to complex mathematics and/or
software requirements, extensive experimental requirements to
determine input parameters and/or over-simplification of mineral
textures for modelling purposes. These practical limitations have
so far inhibitedwide-spreadutilisationof these simulations in indus-
trial scenarios, confining them largely to academic applications.

The goal of this paper is to outline a tessellation-based image
analysis method for thin sections, with the aim of prediction of lib-
eration andmetallurgical attributes of a given ore. This goal in itself
is not unique, as a plethora of liberation assessments have previ-
ously attempted to predict liberation behaviour. The novelty in the
method followed in this paper is the use of straightforward image
analysis applied to mineral texture images from automated scan-
ning electronmicroscopes. The presented approach requires quanti-
tative mineralogical image data (for instance QEMSCAN�, MLA� or
similar images) and uses a freeware image analysis program (Fiji),
making it an easily accessible method for liberation analysis. A rela-
tively fast and straightforward method is presented that enables
simulation of random liberation based on image analysis of real
ore textures using a particular tessellation pattern called a Voronoi
tessellation. Aside from outlining the methods, this paper also vali-
datesuseofVoronoi tessellations for liberationassessmentsby com-
paring tile shape and size, as well as liberation predictions to that
obtained for real ore particles. Several other attributes of the libera-
tion assessment includingminimum resolution and repeatability of
the analysis are also reviewed. Lastly, potential practical applica-
tions are considered and showcased through several case studies.

2. Methods

2.1. Motivation

The motivation behind the presented methodology was to
enable image analysis-based liberation assessment to:

– Provide a repeatable benchmark for completely random
liberation of a given mineral texture.

– Predict liberation behaviour of a mineral texture without the
need for milling experiments without the need for complicated
models or costly dedicated software.

The data presented in this set of papers is based on data from an
automated scanning electron microscope (SEM, specifically QEMS-
CAN� in this paper). However, this does not mean that the pre-
sented methodology is limited to such analytical tools. To
facilitate straightforward data processing, the key requirements
for this liberation method are that image data is available in a dig-
ital format with an accurate and well-defined pixel size (in microns
or another unit of length), and that mineral phases (or zones) have
a unique appearance that allows them to be distinguished from
one another. False colour images from any automated mineralogi-
cal SEM neatly fit these criteria, but other data sources such as an
optical microscope with high resolution digital camera and mech-
anised stage, or even photographs of halved drill cores or a rock
face can also be analysed provided mineralogy (or mineralogical
zones) can be easily distinguished.

2.2. Automated mineralogical analysis

Automated mineralogical tools such as QEMSCAN� and Mineral
Liberation Analyzer (MLA) produce digitised textural images with
mineralogy data represented in user-defined colours, and with res-
olutions down to the (sub-)micron range. Therefore, liberation
analysis through image processing of these automated mineralogy
images represents a logical evolution for the approach pioneered
by Gaudin (1939), which was based on (analog) optical
microscopy.

In this study a QEMSCAN� 4300 was used to generate the min-
eralogical data and textural images used for the liberation analysis.
All analyses were completed in field scan mode with a pixel spac-
ing of 10 lm. Development of the Species Identification Protocol
(SIP) database and processing of raw data was done in FEI iDiscover
versions 4.2 and 4.3. The procedures for data analysis, outlined in
Pirrie et al. (2004) and Rollinson et al. (2011), were followed for
data processing and analysis.

Automated mineralogical texture images are normally exported
as false colour images to ensure mineral phases are easily distin-
guishable. For the liberation assessment presented in this paper,
use of normal colour values in the red–green–blue (RGB) colour
space is possible but this requires recognition of the combination
of three colour values that together specify the colour specific to
a particular mineral in the false colour image. Having to recognise
combinations of colour values convolutes the analysis method pre-
sented in this paper, so for ease of subsequent liberation analysis
greyscale images were found to be preferable. To this end, standard
user-defined RGB colours used in iDiscover for the different min-
eral species in the Species Identification Protocol (SIP) were rede-
fined to greyscale values (see Fig. 1) before exporting as .tiff
images. A brightness value (0–255, where 0 is black and 255 is
white) was assigned to every mineral phase in a given image, with
the exact value specifically selected and recorded to ensure each
mineral has a unique and identifiable brightness. This colour sub-
stitution allowed straightforward recognition of each mineral
phase during the image and data analysis stage described below.

It should be noted that the redefinition of false colour images to
greyscale through simple post-processing of images to greyscale
images is unlikely to work, as it is probable that several different
RGB colours are assigned the same greyscale value. It is also impor-
tant to point out this analysis requires greyscale mineral images,
which is not the same as backscatter electron (BSE) images, as
the latter does not in itself convey which exact mineral species is
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