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a b s t r a c t

A stirred milling model, based on the concept of shear–volume power, was developed and applied to
geometries typically found in mineral processing systems. Generalising this model permits its use to
model more complex mill geometries, such as those describing a tapered disk mill and the CoBal mill.
Due to the additive property of the shear–volume power, the calculation of the power of complex mills
is possible through geometric decomposition. This approach is supported by the calculation of the shear–
volume power of a number of simple geometries commonly found in mills, and is used in the calculation
of the shear–volume power of a tapered disk mill and the CoBal mill. Finally, by incorporating a breakage
model, an equation that offers some usefulness in the design, operation and optimization of stirred mills
is presented.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With ever-decreasing grain sizes, the mineral processing indus-
try has a strong motivation to grind finer, leading to the adoption
of stirred milling. In selecting, designing, optimizing and analysing
an industrial stirred mill, there is a reliance on computational
methods. Techniques such as computational fluid dynamics (CFD)
and discrete element modelling (DEM) have provided guidance.
However, these methods require significant resources and effort.
An easier method has been proposed, with the objective of sim-
plifying the analysis of stirred mills (Radziszewski, 2013). Using
this method, the power is expressed as a function of only the
viscosity, the mill speed, and the so-called shear–volume.

P ffi lx2Vs ð1Þ

Though the shear–volume power model is simple, it has
demonstrated the ability to predict the power draw of three stirred
mills configurations: tower, pin and horizontal disk stirred mills
(Radziszewski, 2013), validating its use in stirred milling, as illus-
trated in Fig. 1.

However, the different mills assessed by Radziszewski (2013)
had simple geometries, with parallel shear surface pairs, and with
one of the surfaces stationary. Here, the main focus of this paper is
the generalization of the shear based power model presented by

Radziszewski (2013) in order to assess the effect on mill power
of more complex geometries, followed by a discussion of different
dimensions to future development and use.

2. Expanding the design and analysis space

In the Radziszewski (2013) design space assessment, the
geometries which are evaluated are illustrated in Fig. 2. These
are fairly simple geometries and are variations of mills found in
use in the mining industry. To provide a common basis of compar-
ison, a mill height of 1 m and a shell diameter of 1 m are used
throughout the assessment. These dimensions are adopted here.

Looking beyond typical mineral processing applications, a num-
ber of more complex stirred mill geometries can be found or
devised. These include the angular gap CoBal mill (Orumwense,
1992), and the tapered disk mill, which is presented below. The
fundamental design characteristics of the CoBal mill as well as
the Tapered mill, adapted to the design parameters used by
Radziszewski (2013), are illustrated in Figs. 3 and 4.

In the case of the CoBal mill, the impellor is ‘‘W’’ shaped cen-
tered about the shaft. The chamber mirrors the impellor shape
and is off-set by some distance providing a constant gap between
the impellor surface and the chamber wall.

For the Tapered mill, it is a variation of the disk-on-disk mill
illustrated in Fig. 2e, where it is expected that the maximum shear
experienced at the impellor disk circumference is greater than that
found at the inner circumference of the stationary ring. To
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maintain a constant shear gradient, one can propose the use of
tapered disks as shown in Fig. 4. In this case, the shear gradient
would need to meet the following criteria:

u
d
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y1
¼ xr2

y2
ð2Þ

Rearranging gives the gap at the circumference of the stationary
ring as:

y1 ¼
r1

r2
y2 ð3Þ

The dimensions used in the CoBal mill and Tapered mill are found in
Figs. 3 and 4 respectively.

3. The shear–volume power—a re-derivation

The simple mill configurations used by Radziszewski (2013) did
not capture the full design space of stirred mills. When analysing
mills such as the CoBal and the tapered disk mill, a more general-
ised approach to finding the shear–volume power is needed due to
the complex geometry and the different rotational speeds of their
components. This approach will be derived here, with some
modification to the formulation presented by Radziszewski (2013).

The basis of the shear–volume power is the relationship
between the stress and the rate of shearing strain. This is a con-
stitutive equation—it is a phenomenological relationship between

two physical quantities that describes the behavior of a class of
materials, but is not universal, as illustrated in Fig. 5.

Here, the Newtonian constitutive equation is adopted and is
written as

s ¼ l du
dy

ð4Þ

In cylindrical coordinates, an appropriate coordinate system for
stirred mills, the complete Newtonian shear stress is expressed as
(Munson et al., 1999)
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In keeping with the formulation of shear–volume power analy-
sis, only the dominant shear term is kept (Radziszewski, 2013). All
other terms are ignored.
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By approximating the derivative by a finite difference, the shear
stress becomes
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Here, it is assumed that the shear is due to two moving surfaces, one
at r1, moving at a speed u1, the other at r2, at a speed u2. The
moment of the shearing force on a surface is given by

T1;2 ¼ s1;2A1;2r1;2 ð8Þ

Since the mill is a rotating system, the shear moment and the
angular rate of change define the mill power

P ¼ T1x1 þ T2x2 ð9Þ

Without loss of generality, the first terms is examined in more
detail. By substitution, this term can be expanded to

P1 ffi s1A1r1x1 ¼ l r1

d
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 �
A1r1x1 ð10Þ

In contrast to the use of Cartesian expression presented in
Radziszewski (2013), Eq. (10) reflects the cylindrical nature of the
mills. In addition, motion in both limiting surfaces is properly
accounted for; when both surfaces rotate at the same speed, this

Nomenclature

A Area on the mill over which the shear forces act
Ai ith non-intersecting division of the mill area
d distance between shearing surfaces
d1;d2 distance between shearing surfaces
Db grinding media diameter
EB specific breakage energy
F80 feed 80% passing size
h height
l viscosity of the ore
P shear–volume power
Pi ith decomposition of the shear–volume power
P80 product 80% passing size
Q throughput
r radius of inner surface
R radius of outer surface

r0 inner radius of surface 1 or offset distance
r1 outer radius of surface 1
R0 inner radius of surface 2
R1 outer radius of surface 2
qm media density
qsl slurry density
T moment of the shear force
s shear stress
u velocity
Vs shear–volume
x angular velocity or angular velocity of surface 1
X angular velocity of surface 2
W i bond work index
x percentage of the dispersant
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Fig. 1. Stirred mill power comparison (Radziszewski, 2013).
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