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a b s t r a c t

Falcon concentrators are commonly used in the mining industry to separate ores. Recent research yielded
a predictive model for their separation performance in the form an analytical expression, based on a
mechanistic understanding of the separation physics in these devices. While giving good results for
lab-scale concentrators, in the form it is given, this model is not ready for industrial applications because
of two limitations: its strong dependance on high quality measurements of size-density distributions, and
its sensitivity to the discretization of data. These two shortcomings are solved by representing the distri-
butions using continuous polynomials functions, in order to produce a robust model that makes it pos-
sible to validate the predictions for industrial scale Falcon bowls.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Falcon concentrators are commonly used by the mining indus-
try to achieve physical separation of fine particles in high tonnage
slurries. They have proven to be efficient density-based separators
that operate well over a wide range of conditions, so there is great
interest in their application to challenging separation processes
such as light fine material recovery as needed in Waste Electrical
and Electronic Equipment (WEEE) treatment (Duan et al., 2009),
tailings dewatering in the oil sands industry, handling of dredged
sediments (Kroll-Rabotin et al., 2011a) and coal processing (Oruç
et al., 2010). The only missing piece to build the bridge between
these challenging industries and the use of Falcon concentrators
is a robust predictive model of their separation performance that
would make it possible to identify cases when Falcon concentra-
tors could be used without relying on field-testing.

These concentrators are made of a fast spinning bowl in which
the slurry flows in a thin film at the wall (McAlister and Armstrong,
1998). The centrifugal force due to the spin acts as an enhanced
gravity field that makes it possible to separate particles based on
their differential settling velocities, even in the ultrafine size range
(Deveau and Young, 2005; Deveau, 2006). A predictive separation
model has been derived from a physical analysis of the separation
within those bowls (Kroll-Rabotin et al., 2010, 2013) and validated
in lab conditions (Kroll-Rabotin et al., 2011b):
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in which Cp is the recovery to concentrate, Q and x are the operat-
ing parameters (volume flow rate and rotation rate), Rmin;Rmax and
Hbowl are the dimensions of the spinning bowl (bottom and top ra-
dii, and height) and dp and qp are the size and density of each par-
ticle class p.

The model makes use of two calibration constants, k0 and k/,
that account for the slight difference between actual Falcon bowls
and the conical shape assumed in the model, and for solid interac-
tions in concentrated conditions. The constants have been esti-
mated using experimental and numerical investigations which
yielded values of k0 � 0:68 and k/ � 1:6. The density qs has been
identified as the mixture density in the overflow (Kroll-Rabotin
et al., 2013):

qs ¼ qf þ /
ZZ
ðqp � qf Þð1� CpÞffeed ddp dqp ð2Þ

where ffeed is the washability of the processed slurry, that is the par-
ticle distribution per sizes and densities. Its presence in the calcula-
tion of qs is the way the model accounts for the effect of the feed
slurry on the separation function for concentrated suspensions.

For concentrated feed slurries, the dependence of the separation
on the particle size–density prevents the original model from being
a useful engineering tool since operating data sets are usually not
sufficiently detailed, and information that is missing from the field
data, as well as discretization issues can change the model’s pre-
dictive capabilities significantly. For the model to be able to pro-
cess industrial data, such data must be expressed in a form that
allows the model to properly ‘guess’ the missing values, without
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any knowledge from the operator about the model’s formulation.
In the present study, polynomials are used to represent particle
distributions in order to overcome this limitation.

2. Polynomial implementation of the model

The separation function (Cp) is a product of the different physical
quantities, each with its own scaling exponent, so that when ap-
plied to a polynomial function, the result is still a polynomial func-
tion. However, there is complication that arises due to the bounded
function in Eq. (1) that cannot be captured by polynomials.

2.1. Evaluation of the integrals

Multiplicative terms that do not depend on particle properties
are grouped in a single coefficient (K), and the separation function
is split into three domains with specified conditions for particle
sizes and densities:

Cp¼
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p
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Using this expression, the minimum and maximum functions in
Eq. (2) can be accounted by redefining the integration domain:
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The integration and composition of polynomials yield polyno-
mial functions. However, here, the upper integration bound for
the density is not a real polynomial as it contains negative expo-
nents. In the particular case of this model, this issue can be circum-
vented as the final value that is expected is a scalar (qs) that can be
evaluated directly with scalar integration bounds.

2.2. Definition of polynomials over finite intervals

As polynomials cannot asymptotically tend to zero, the polyno-
mial representation of finite distributions must be defined on
bounded intervals. This is particularly well suited for processing
tabulated data, since such data comes with its own definition do-
main for each cell. Eq. (2) becomes:

qs ¼ qf þ /
X
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P
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From Eq. (3), it comes that the integration domain can be re-
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Also when dcðqðkÞ0maxÞ is between dðkÞmin and dðkÞ0max, the integration
according to particle size must be split into two integrals to ac-
count for the change of integration bound:
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where qðkÞ0min ¼maxðqðkÞmin;qsÞ. As long as the distribution in the feed
stream (ffeed) is expressed in a piecewise polynomial form, all the
integration steps but the last one yield polynomials. The only one

that may not produce a polynomial result is
R qc ðdpÞ
qðkÞ0

min

pdqp, where

the upper integration bound is not a polynomial function. Neverthe-
less, since size intervals are known from the particle size distribu-
tions, this integration bound can be evaluated as a scalar, so that
the result is a scalar and there is no need to carry logarithmic terms.
Finally, Eq. (2) can be calculated directly for any piecewise polyno-
mial representation of ffeed.

3. Evaluation of the new implementation using tabulated data

3.1. Comparison with the discrete approach: example of coal recovery
from fine tailings

The discrete implementation of the model has already been
used to predict separation efficiencies of the Falcon concentrator
for fine coal recovery (Kroll-Rabotin et al., 2013). The results were
calculated using the tabulated data presented in Table 1, under the
assumption that the volume distribution was constant in each cell.
This washability was discretized using 500 sizes � 500 densities to
run the simulations.

Fig. 1(a) shows that the results may depend significantly on the
input discretization since 20 particle classes (

ffiffiffiffiffiffi
20
p

� 4:5 on the
horizontal axis) would already be an uncommonly fine discretiza-
tion among mineral processing studies. Consequently, it may be a
severe limitation of the model to require the operator to discretize
his data before using the model, as the process may introduce sig-
nificant error. The same tabulated data set turned into flat volume-
based distributions has been simulated with the new polynomial
implementation, and Fig. 1(a) shows that it perfectly matches the
finely discretized results of the former model.

Fig. 1(b) shows the predicted overflow densities for varying
operating conditions. The three curves respectively show the
piecewise continuous distributions used earlier, the discrete distri-
bution from Table 1, and an hybrid distribution (discrete densities,
continuous in size). Comparing the three curves shows again that
too coarse discretization impacts the predicted result, and confirms
that the continuous model is necessary, as using the raw tabulated
data yields spurious predictions.

3.2. Benefits of polynomial interpolation for data reconstruction

The coal washability used previously was well described, so lin-
ear interpolation of the cumulative distributions (which yields
piecewise constant probability density functions) gave good re-
sults. Because it is very difficult to measure coupled size-density
distributions experimentally, data of such quality are very rare
for industrial applications.

A sample distribution for a dredge sediment is presented in
Table 1. A significant amount of ultrafine particles is found be-
tween 0 and 10 lm, and it is hardly satisfactory to assume a flat
distribution by volume in this size range. The cumulative distribu-
tions have thus been fitted using cubic Hermite splines, as shown
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