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a b s t r a c t

Mineral processing circuits typically employ multi-unit staged separation in order to produce a product
with sufficient recovery and quality. The design of these separation circuits is largely driven by trial-
and-error, incorporating several stages of experimental testing and computer simulation. Linear circuit
analysis is a 30 year old fundamental technique that may supplement the more rigorous simulation
methods to streamline the formulation of an optimal solution. Unfortunately, linear circuit analysis
remains underutilized due to the manual and cumbersome algebra involved. This paper presents a
new matrix-based algorithm that allows efficient and automated generation of analytical circuit solutions
required for linear circuit analysis. A major advantage of this technique is that it may also be applied
numerically to allow simple spreadsheet-based simulation without circular references and iteration. In
this communication, the algorithm is thoroughly demonstrated in a trial case, and the analysis is
expanded to include 31 simple two and three-unit circuit configurations as well as two especially
complex circuits (>15 units). Such large-scale circuit analysis was prohibitively complicated using prior
methods. The overall results indicate that while the linear circuit analysis approach is valid, exceptions do
exist for many of the original derived design rules.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental goal of mineral processing is to increase the
value of dilute mining products to a degree that sufficiently
justifies the upgrading costs. This goal is achieved by physically
concentrating the valuable material through stages of liberation
and separation. Ultimately, this beneficiation process generates a
tailings product that must be disposed as well as one or more
concentrate products that may either be sold in the market or
subjected to further downstream refinement. Regardless of the
mineral commodity, the physical separations circuit ultimately
determines the value of the marketable products in terms of
product purity and yield. Typical unit operations for mineral sepa-
rations include froth flotation, dense-media separators,
water-based gravity separators, electrostatic separators, magnetic
separators, and optical ore sorters (Wills and Napier-Munn,
2006). Most, if not all, of these separation techniques are not capa-
ble of producing a product of sufficient quality and yield with a sin-
gle unit. As a result, mineral processing plants use staged circuits
that incorporate multiple interconnected separation units of

different sizes and operational characteristics. These circuits often
employ design features that may include series and parallel
arrangements, stream splitting, feedback loops (recirculating
loads), and multiple feed points. Similar process design approaches
also apply to other separation operations, including distillation
(e.g. Schweitzer, 1997), plastics recycling (Wolf et al., 2013), algae
harvesting (Chen et al., 1998), waste water treatment (Rubio et al.,
2002), and juice de-pulping (Araya-Farias et al., 2008). The tech-
niques presented in this paper are derived from generic separation
fundamentals and may prove beneficial for any of these industries.

The optimal design of a plant flowsheet is an open-ended, ill-
defined engineering problem. The final design must specify the
number and type of unit operations, standard operating points,
and the stream configuration. Given the large flow volumes, high
capital costs, and relative rigidity of the final flowsheet, consider-
able effort in the design phase must ensure that appropriate sepa-
ration circuit configuration is selected early in the design process.
Over the past 40 years, this design challenge has been assisted by
computational modeling and simulation (e.g. Lynch et al., 1981).
Since their original inception, process models have grown from
low-fidelity empirical curve fits to phenomenological and other
physics-based predictive models (King, 2001; Napier-Munn and
Lynch, 1992). Today, cheap computation power has permitted
the use of computation fluid dynamics (CFD) and discrete element
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method (DEM) simulations throughout the circuit design process.
Nevertheless, most commercial circuit design software relies on
phenomenological process models for the various unit operations.

One drawback to phenomenological models is that they require
extensive experimental testing to calibrate the model parameters.
In general, the reliability of the simulation is principally dependent
on the size and validity of the experimental data set. Scale-up and
greenfield design studies often begin with a nominal flowsheet
configuration during bench-scale testing. These results are then
subsequently used to build process models and guide locked-cycle
and pilot-scale studies; however, the process may demand an
alternative flowsheet if the scaled results are insufficient. Depend-
ing on the degree of flowsheet alteration, the original bench-scale
laboratory data may not be valid for the revised designs. New lab-
oratory tests are required, and the entire process becomes itera-
tive, largely driven by trial-and-error and prior experience
(Mendez et al., 2009). Ultimately, the design process may lead to
inefficiencies and sub-optimal solutions since the simulation rou-
tines do not provide fundamental insight on how the circuit should
be configured.

One complementary circuit evaluation and design tool is linear
circuit analysis (Meloy, 1983a,b; Williams and Meloy, 1983). This
methodology uses partition-based separation fundamentals to
analyze the configuration and interconnection of staged separation
units while generically considering the actual unit operations. The
evaluation of a circuit analysis ultimately provides a single ‘‘score’’
which describes the circuit’s inherent separation efficiency relative
to other circuits with similar equipment. This score may then be
used to rank alternative configurations, while providing funda-
mental insight on which circuit design features may actually
improve performance.

Linear circuit analysis relies on the analytical circuit solution.
This mathematically expression describes the overall circuit recov-
ery as a function of the recovery in individual units. Meloy (1983a)
has shown that this analytical solution can be derived solely from
the unit interconnections using algebraic manipulation. The actual
downstream circuit analysis then uses this derived analytical
expression to provide a relative measure of the circuit’s inherent
selectivity. The linear circuit analysis procedure does not rely on
strict process models and requires no a priori knowledge of the unit
operations, the feed material, or the operational environment of
the separation. As a result, the methodology is not restricted to
specific unit operations or mineral commodities. Rather, the results
are universally applicable to all physical separations, whether min-
eral or non-mineral, even those that do not have a known or well-
vetted process model. The limited data requirements make the
methodology especially useful in the preliminary plant design
phases where extensive feed information and laboratory data
may be prohibitively costly or unavailable. A more thorough
review of the linear circuit analysis methodology is provided in
Section 2.

Apart from the true circuit analysis evaluation, the analytical
circuit solution provides other auxiliary benefits, namely in circuit
simulation. Many mineral processing simulations (especially
spreadsheet-based options) use a sequential, modular solution
algorithm. The mass flow rates throughout the circuit are
calculated independently and sequentially for each unit. The per-
formance of downstream units is dependent upon the calculations
from upstream units. The model calculations are performed
unit-by-unit, using the products of upstream units as feed for
downstream units. Circulating loads are implemented by invoking
iterative calculation (i.e. ‘‘Circular References’’ in Microsoft Excel).
The initial value for a circulating load is either set to zero or a nom-
inal ‘‘guess’’ value and the entire circuit is evaluated repeatedly
until this value stabilizes within a desired tolerance. With this
solution approach, the convergence rate is not only dependent

upon the number of units, but also the complexity of the circuit
configuration. Alternatively, linear circuit analysis suggests that
all processing circuits, despite complexity, have a direct analytical
solution. These solutions can be determined by algebraic manipu-
lation and subsequently used to directly calculate the circuit inter-
nal and product flows. While iteration may be needed to evaluate
the actual process model, iteration is not needed to synthesize the
circuit. An example of this synthesis is shown in Section 4.

Despite the scientific appeal of linear circuit analysis, the
approach remains largely underutilized. The algebra governing
the methodology becomes prohibitively complicated after the cir-
cuit surpasses four or five units. Several authors have described
procedures for simplifying the cumbersome mathematics associ-
ated with circuit reduction (Yingling, 1988; Williams et al.,
1992). Unfortunately, these procedures require a working knowl-
edge of advanced probabilistic analysis, flowgraph reduction, and
graph theory concepts. Even if these concepts are mastered, the
procedures still require manual calculation and, therefore, cannot
guarantee a solution devoid of incidental miscalculation.

Addressing these limitations, this paper presents a new method
to setup and generate circuit solutions by a matrix reduction algo-
rithm. This procedure may be implemented strictly numerically for
the purpose of direct simulation or symbolically to derive the ana-
lytical circuit solution. The methodology relies on simple connec-
tion matrix setup and manipulation. The procedures are easily
scalable to a large range of user-defined circuit configurations,
and the solutions are produced quickly and simultaneous for all
streams. The remainder of this paper reviews the original mathe-
matical principles of linear circuit analysis (Section 2), describes
the steps and requirements of the matrix reduction algorithm (Sec-
tion 3), shows a calculation example involving the algorithm (Sec-
tion 4), and finally investigates the complete circuit analysis
methodology through application examples (Section 5).

2. Review of linear circuit analysis

2.1. General approach

The linear circuit analysis approach is fundamentally based on
separation probabilities. For particulate separations, the concen-
trate to feed mass flow ratio (C/F) for any particle class is depen-
dent upon the separation technology and the physical properties
of the individual particles. Graphically, this ratio may be depicted
as a partition function, such as the one shown in Fig. 1. The parti-
tion function shows the probability (P) that particles of a given
property value will report to the concentrate product. These prop-
erty values are often normalized against the separation ‘‘cut-point’’
to produce a dimensionless quantity (Z) on the x-axis. Several
mathematical formulations of the partition curve for various unit
operations are available in the literature (e.g. King, 2001). Ulti-
mately, this curve shows that the dimensionless concentrate to
feed ratio (C/F) is a function of the dimensionless property on
which the separation is based (Z).

As depicted in Fig. 1, the efficiency of a particular separator can
be generically quantified by the slope the partition curve at Z = 1.
As this slope increases, the shape of the actual partition curve
approaches the ideal partition curve. In practice, this value is often
quantified by the imperfection or Ecart probable (Ep) value. These
indicators are used to rank or compare competing processes or
new separation technologies. Nevertheless, a more precise defini-
tion of a function’s slope is given by the derivative. For a single unit
operation (C/F = P), the derivative of the functional concentrate to
feed ratio at Z = 1 is given by:

dðC=FÞ
dðZÞ ¼

dP
dZ

ð1Þ
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