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a b s t r a c t

The adequate cost estimation of mill plants plays a crucial role in the success of feasibility studies of min-
ing projects. Grinding is one of the most important operations in mineral processing plants and assumes a
substantial share of the total milling costs. The objective of this work was to develop a set of cost func-
tions for major grinding mill equipment. These cost models were developed using two relatively different
techniques: uni-variate regression (UVR) as well as multivariate regression (MVR) based on principal
component analysis (PCA). The first is appropriate for the quick estimation of costs in the early stages
of project evaluation, while the second method can be helpful in the feasibility study stage. The explan-
atory variable in UVR was power (P), while in MVR the power and some other variables depending on the
type of mill were used. The PCA technique was employed in order to omit the correlation between the
independent variables in the multivariate regression. Furthermore, the scale-up factor for all mills has
been calculated. The result of the evaluation of the models showed that the mean absolute error rates
were less than 9.84% and 11.36% on average for the capital and operating costs of the uni-variate model,
and 5.82% and 4.9% for the multivariate model, respectively.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Before initiating a mining project a feasibility analysis is a key
step in ensuring that the project is technically feasible, cost-effec-
tive and profitable. Consequently it is essential to identify the cost
factors, which can be classified as capital and operating costs. The
costs of each item are required in order to inspect the authoriza-
tion of project progress (Pascoe, 1992). The overestimation or
underestimation of these costs can result in a failure of project
investment (Niazi et al., 2006); overestimation could result in a
potentially profitable project not progressing ahead, while under-
estimation may cause an unviable project going progress and fail.
Therefore, due to the lack of information at the initial stages of
the project, the correct estimation of costs is very difficult
(Gwang-Hee et al., 2004). A number of cost estimation models have
been developed for this purpose. Cost models could also be imple-
mented in the simulators which are used in plant design and opti-
mization. Connecting models of unit operations built in the design
and optimization simulators (such as MODSIM) to equipment cost
estimations requires the ‘‘cost models’’.

Regression is among the most professional common techniques
used to build appropriate cost models (Smith and Mason, 1997).
Researchers including Prasad (1969), Mular (1982, 1998), Daud

(1979), Stebbines (1987), Petrick and Dewey (1987), O’Hara
(1980), O’Hara and Suboleski (1992), Redpath (1986), Camm
(1994) and Noakes and Lanz (1993) and others have attempted
to offer appropriate cost estimation models in mining and mineral
processing. Almost all of them have employed exponential uni-var-
iate regression approaches, only correlating one decision variable
to a cost value (Stebbins, 1987).

Hence, despite the importance of these models in preliminary
capital and operating cost estimation, the role of other effective
independent variables has simply been ignored. Some of these
models have now become obsolete, and updating them may also
cause considerable errors. Therefore it seems that multivariate
regression based on up-to-date data is the best solution for provid-
ing adequate cost estimation models.

In this research, an attempt has been made to provide two sets
of univariate and multivariate regression functions for the estima-
tion of the capital and operating costs of grinding mill equipment
in mineral processing plants based on up-to-date cost data, since
the comminution system contributes to about 60% of the total cap-
ital cost in concentrator equipment, 40–50% of the total operating
costs, and more than 60% of the total energy consumption in pro-
cessing factories (Wenzheng, 1991). Although the costs vary from
mine to mine, grinding could contribute about 90% of total operat-
ing costs of comminution (Wills and Tim, 2011) and therefore esti-
mation of costs for this section is vital.

In the next section, the specification of six main types of mills
are introduced as the data structure, and also the procedure of
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regression modeling for uni-variate and multivariate regression is
described. In Section 3, the ultimate cost model is provided. Fur-
thermore, the statistical significance of the model is inspected.

2. Methodology

2.1. Data structure

A set of technical and economical data for six main types of mill,
operating in mill plants in the United States, have been gathered
(InfoMine Inc., 2007, 2010). Data has been classified on the basis
of cost types; capital and operating and are escalated to 2010 US
dollar. The capital cost (Cap.) is based on US dollars while the oper-
ating cost (Op.) is provided based on US dollars per hour. The oper-
ating cost included overhaul (parts and labor), maintenance (parts
and labor), lubrication, and wear parts (such as liners and grinding
media) for all mills. The overhaul cost includes both overhaul parts
and labor, associated to scheduled refurbishing or replacement of
major wear components such as drives, support frames, and ves-
sels. The maintenance cost item also consists of the both mainte-
nance parts and labor, which represents those costs associated
with both unscheduled repairs and scheduled servicing of both
minor and major components, excluding overhaul activities. These
include all aspects of machine maintenance exclusive of fueling,
lubrication, tire replacement and maintenance and replacement
of those parts used directly to impart energy. It should be noted
that the definite cost associated to maintenance will depend on
some parameters such as ore type and abrasiveness.

Meanwhile, the cost of the operator’s time is not incorporated
here. Our database and consequently the developed models cover
mills with separate motors (except for the tower mill) and there-
fore the cost of purchasing and operating the motors (including
the cost of energy) has not been considered. It also implies that
costs of mills with integral motors (as in wraparound drives) can-
not be estimated with the developed models. The capital and oper-
ating costs of motors are usually estimated separately from the
other costs of the mills. Particularly, the operating cost of energy
depends on the real throughput and efficiency of equipment and
also the properties of the material being ground (such as hardness).
Bond’s method or empirical models could be used to estimate the
real consumption of energy and then the cost could be evaluated.

Before modeling the costs, the relative shares of each operating
cost item were investigated (Fig. 1). In the rod, ball (wet and dry)
and tower mills, the wear part has the highest share and mainte-
nance ranks second, but in the roller mill and the SAG mill this is
reversed. The lubrication item has the lowest share for all mills,
as can be seen in Fig. 1.

Technical parameters of the six considered mills with their sta-
tistics are presented in Table 1. All dimensions are in meters (m)
and power (P) is in kilowatts (kW). The range of power of the mills

(Table 1) used in the model development should be considered in
order to not extrapolate the models too much.

2.2. Regression modeling procedure

The scheme of the modeling process is presented in Fig. 2. All
the steps were carried out until the adequacy of the models was ac-
cepted. The final models were tested with performance evaluations
such as residual analysis, lack of fit testing, and examination of the
effects of influential points. Moreover the MAER (Mean Absolute
Error Rate) measure was used as a means of comparison between
the models. The MAER is defined as follows (Kim et al., 2004):

MAER ¼
P Ce�Ca

Ca

� �
� 100

��� ���
n

ð1Þ

where Ce is the estimated mill costs, Ca is the actual (from the data-
base) mill costs, and n is the number of data used in regression
model building.

2.2.1. Uni-variate regression
After choosing the regressor variables, the structure of the mod-

el should be selected. Cost models of mineral grinding mills have
historically applied the power function platform (Mular, 1982, Mu-
lar and Poulin, 1998; Pascoe, 1992). In these models, the mill
power has been selected as the explanatory variable.

Here, considering power (P) as the regressor variable, different
mathematical functions have been examined using the MATLAB
curve fitting toolbox. Among all the functions tested, the power
function in the form of Cost = a(power)b showed more consistency
with the data, where a and b are constants determined by regres-
sion analysis.

By approving the power function it is possible to give a preli-
minary cost estimation in terms of the ‘‘scale-up factor’’. The earli-
est mention of this concept was found in 1947 as the ‘‘rule of six-
tenths (Williams, 1947). Based on this rule the approximate costs
can be obtained, if the cost of a similar item of a different size or
capacity is known. The following equation shows the scale-up
function (Ramer et al., 2008).

Cost2 ¼ Cost1 �
S2

S1

� �Se

ð2Þ

where Cost2 is the approximate cost ($) of equipment of size S2

(cfm, Hp, ft2, or suchlike), Cost1 is the known cost ($) of equipment
of corresponding size S1 (same units as S2), and S2/S1 is the ratio
known as the size factor (dimensionless). Se in this equation is
the scale-up factor which is obtained based on power (b) in the
cost’s uni-variate function. In this research the size factor is based
on mill power as P2/P1. The usage of P is common in equipment
selection, since based on the knowledge of the equipment’s power
estimating the capacity is easier.

Fig. 1. Relative share of each operating cost item.
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